MME115S Kvantitativní metody A

Obchodně podnikatelská fakulta v Karviné
zima 2007
Rozsah
2/2/0. 4 kr. Ukončení: zk.
Vyučující
Mgr. Radmila Krkošková, Ph.D. (přednášející)
Mgr. Šárka Čemerková, Ph.D. (cvičící)
doc. Marie Godulová, CSc. (cvičící)
Mgr. Radmila Krkošková, Ph.D. (cvičící)
Ing. Radomír Perzina, Ph.D. (cvičící)
Ing. Filip Tošenovský, Ph.D. (cvičící)
Garance
Mgr. Radmila Krkošková, Ph.D.
Katedra informatiky a matematiky – Obchodně podnikatelská fakulta v Karviné
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Předmět Kvantitativní metody A seznamuje se základními poznatky a terminologií z oblasti algebry a matematické analýzy tak, aby student byl schopen používat zavedené pojmy a vysvětlené myšlenkové a početní postupy v dalších předmětech nebo při samostatném studiu. Umožňuje rovněž získání příslušných výpočetních dovedností. Na tento předmět navazuje předmět Kvantitativní metody B.
Osnova
  • Struktura výkladu:
    1. Motivační úvod, historie matematiky; množinově logický jazyk matematiky
    2. Lineární vektorové prostory
    3. Matice a maticová algebra
    4. Soustavy lineárních algebraických rovnic
    5. Determinanty
    6. Speciální zobrazení
    7. Limita a spojitost
    8. Diferenciální počet funkcí jedné proměnné
    9. Užití diferenciálního počtu funkcí jedné reálné proměnné
    10. Neurčitý integrál
    11. Určitý integrál
    12. Nekonečné nezáporné číselné řady


    Obsah předmětu:
    1. Motivační úvod, historie matematiky
    Historie vývoje matematiky, rozvoj matematiky v Řecku, základy evropské matematiky, vznik vědeckých center v 17. století, matematická analýzy 18. století. Vývoj matematiky v 19. a 20. století. Kalkulátor, počítače a matematika.
    Množinově logický jazyk matematiky
    Množinová symbolika, výroky a logické operace, množinové relace a operace. Zobrazení. Číselné množiny.
    2. Lineární vektorové prostory.
    Příklad - aritmetický vektorový prostor. Lineární kombinace vektorů, lineární závislost a nezávislost vektorů. Báze lineárního prostoru, vlastnosti báze, hodnost lineárního prostoru.
    3. Matice a maticová algebra
    Základní pojmy, součet matic a násobení matic konstantou, lineární prostor matic. Úprava na trojúhelníkový tvar, hodnost matice. Čtvercová, obdélníková, jednotková, regulární a singulární matice. Součin matic a jeho vlastnosti. Inverzní matice.
    4. Soustavy lineárních algebraických rovnic
    Matice soustavy, rozšířená matice soustavy. Frobeniova věta a její důsledek. Gaussova a Jordanova metoda řešení soustav lineárních rovnic. Homogenní soustava lineárních rovnic jako další příklad lineárního prostoru.
    5. Determinanty
    Definice, základní vlastnosti. Rozvoj determinantu a řadové úpravy determinantu. Determinant regulární a singulární matice. Cramerovo pravidlo. Výpočet inverzní matice.
    6. Speciální zobrazení
    Reálné funkce jedné reálné proměnné. Supremum a infimum, funkce omezená, monotónní, konvexní a konkávní. Prostá funkce a inverzní funkce. Elementární funkce. Definiční obor elementární funkce, jejich vlastnosti a grafy.
    Posloupnosti. Aritmetická a geometrická posloupnost. Konečná a nekonečná posloupnost. Omezená a neomezená posloupnost. Monotónní posloupnost. Konvergentní a divergentní posloupnost.
    7. Limita a spojitost
    Limita posloupnosti a její vlastnosti. Spojitost funkce jedné reálné proměnné a její vlastnosti. Věta Bolzanova a Weierstrassova. Limita funkce jedné reálné proměnné a její vlastnosti.
    8. Diferenciální počet funkcí jedné proměnné
    Derivace funkce dané explicitně, geometrický význam derivace, vztah spojitosti a vlastní derivace. Věta o derivaci aritmetických operací, o derivaci složené funkce. Diferenciál, derivace vyšších řádů.
    9. Užití diferenciálního počtu funkcí jedné reálné proměnné
    L´Hospitalovo pravidlo. Věty o významu první a druhé derivace pro průběh funkce, stanovení průběhu funkce. Taylorův polynom.
    10. Neurčitý integrál
    Primitivní funkce, integrace per partes a pomocí substituce.
    11. Určitý integrál
    Riemannův určitý integrál, Newton-Leibnizova formule. Plocha rovinného obrazce. Nevlastní integrál, konvergence a divergence nevlastního integrálu.
    12. Nekonečné číselné řady
    Nekonečná řada a její součet, konvergence a divergence řad, geometrická řada. Nutná podmínka konvergence, zbytek řady, řady s kladnými členy, oscilující řady, kritéria konvergence.

    Při přednáškách je využíváno prezentační zařízení a PC. Studijní materiály jsou dostupné v elektronické podobě prostřednictvím fakultní počítačové sítě. Na
Informace učitele
V průběhu semestru se koná jeden test hodnocený 0 až 30 body. Test je možno v průběhu semestru opakovat ve stanoveném termínu. V případě, že student test opakuje, započítává se výsledek opakovaného testu. Zkouška se vykonává formou závěrečného písemného testu, který je hodnocen 0 až 70 body. Průběžný i závěrečný test obsahuje praktickou část (řešení příkladů) a teoretické otázky. Klasifikace se provádí podle součtu bodů získaných v obou testech takto:
0 až 59 bodů - nevyhověl, 60 až 69 bodů - dobře, 70 až 84 bodů - velmi dobře, 85 až 100 bodů - výborně.
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích zima 1990, zima 1991, zima 1992, zima 1993, zima 1994, zima 1995, zima 1996, zima 1997, zima 1998, zima 1999, zima 2000, zima 2001, zima 2002, zima 2003, zima 2004, zima 2005, zima 2006, zima 2008, zima 2009.