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6.6 The Conservation of Momentum and of Energy

Momentum was defined in such a manner so that, in an interaction of particles, both
the mass and the momentum are conserved. Given that the total energy of a free
body, not acted on by external forces, is equal to E = mc?, the fact that in an
interaction of n particles the conservation of relativistic mass applies,

n
Z m; = const. (6.40)
i=1
means that the energy is also conserved:
n
ZEi = const. (6.41)
i=1
This law is used, together with the law of conservation of momentum
n
Zpi = const. (6.42)
i=1

in the solution of problems in which particles interact in any way.
For n particles, the components of the total momentum and the energy are
defined as

n n n n
Ptot,x = Zpix Ptot,y = Zpiy Ptot,z = Zpiz Etot = ZEi (643)
i=1 i=1 i=1 i=1

for frame S, with similar expressions for frame S'.

If, in frame S, during the interaction of n particles, the momentum and the energy
are conserved, then, for the total values of the components of momentum and of
energy, the following relations are true:

(P tOt:x)initially: (P tOt»x)finally (P t0t7y>initially: (P tOtv)’)ﬁnally (P tot:Z)initiauy: (P tOth)ﬁnally

(Etot)initiany: (Etot)ﬁnauy
(6.44)

The conservation of these quantities is valid in general, in every physical process.
The subject will be further discussed in the next section.

Example 6.3 The Photon Rocket

The use of photons in the propulsion of rockets has been proposed. While for
chemical fuels there is a limit in the speed of ejection of mass of the order of 10
km/s, for photons this speed is 30 000 times greater. For this reason, the emission of



6.6 The Conservation of Momentum and of Energy 177

photons by the rocket, with their high speed, was considered that it would give the
rocket a greater speed per unit mass ejected. Find the speed attained by such a
rocket, as a function of the fraction x of its mass that has been ejected as photons.

All photons Rocket

* momentum P,
energy £,
Let the initial rest mass of the rocket be M, and, at some time, a fraction x of this
has been emitted as photons. All the photons are considered to be emitted in the
same direction. The emitted photons carry, in total, an energy Ey and momentum
Py = Ey/c, as measured by an observer on the Earth. If at that moment the rocket is
moving with a speed equal to v and has a relativistic mass M(v) = (1 — k)Myy,

where y = 1 / \/1 —v?/c?, the laws of conservation give:
Conservation of energy: Eyo = Moc? = M(v)c® + Ey = (1 — k)Moc*y + Eq
Conservation of momentum: Py = 0 = M(v)v — Eg/c = (1 — k)Moyv — Ey /¢
Eliminating Ey, between these two relations, it follows that

1+p

Moc? = (1 = )Moc?y(1+ f)and (1 — w)p(1+ ) =1, (1 —x) -5 L,
1— 1—(1—x)?
Ll = (1 — x)*, from which we find f = (—K)z and
1+p 1+ (1 —k)
= ! 1 —xk+ !
73 1—x)
Some numerical values are:
0.5 0.9 0.95 0.99 0.995 0.999
1.16 2.94 3.20 7.09 10 224
0.42 0.77 0.84 0.93 0.95 0.98

We see that, in order to achieve a speed of 0.995¢, which corresponds to y = 10, a
proportion of 95 % of the rocket’s total mass must be emitted as photons. The
useful load is, therefore, only 5 % of the spaceship. Of course, if we wish to
decelerate the spaceship in order to stop it, then accelerate it towards its starting
point and finally decelerate it to a halt at its starting point, the useful load would be

only a fraction equal to (1 — K)4, which has a value smaller than 10~ for maximum
y equal to 10. This makes the photon rockets of doubtful usefulness, without the
situation being very much better for chemical fuels of course. The problem is
examined in greater detail in Sect. 7.6.1.
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6.7 The Equivalence of Mass and Energy

The relation E = mc? describes an equivalence of mass and energy which is
extremely important for Physics. Einstein considered this to be one of the most
important achievements of the Theory of Relativity. The conserved magnitude £
includes energy which is possessed by a body even when it is at rest and is due to its
rest mass. Conversely, the inertial properties of a body, as these are expressed by its
mass, vary when energy is given to the body and its speed increases. An equiva-
lence between mass and energy seems to exist, which is verified experimentally in
many ways. This equivalence makes possible the creation or annihilation of par-
ticles in a reaction, with the assumption of the conservation of mass-energy, m or E,
as well as of other physical quantities (momentum, angular momentum, charge,
hypercharge, lepton numbers, baryon number, taste, color, charm and others, in
addition to some that are still unknown!).

The relation E = mc? has a twofold meaning: it states that mass may be changed
into energy, but also that to every form of energy E there corresponds a mass equal
to m = E/c?. Although the mass appearing in the equation E = mc? is the inertial
mass, in the General Theory of Relativity the inertial mass is equal to the gravi-
tational, and, hence, the relation also attributes a gravitational mass to every form of
energy. We must, however, be careful. If the motion of the gravitational mass of a
photon in a gravitational field is examined, a deflection of light will be predicted, as
demonstrated experimentally. The angle of deflection will, however, be wrong by a
factor of 2, because the calculation does not take into account the geometrical
distortion or curving of space by the mass to which the gravitational field is due.

In general, a change of Am in the mass, corresponds to a change AE in the
energy, and vice versa, where the two quantities are related by

AE = Am c*. (6.45)

The experimental evidence for the validity of this relation is indisputable.

It is worth making a comment, here, regarding this equation. The opinion is
sometimes heard that Einstein discovered the equation E = mc?, which showed that
great amounts of energy may be released when mass is transformed into energy,
something that led to the construction of the atomic bomb, initially, and the nuclear
bomb subsequently. This point of view is wrong, both as regards History as well as
Physics. It must be understood that this equation applies in all physical and chemical
changes, not only in processes in nuclear Physics. It is valid when a spring is com-
pressed or stretched (Problem 6.12) and in every chemical reaction (Example 6.4). It
applies when we light a match, a fire and in all the chemical reactions happening in
our bodies. Man has used fire for many millennia before the discovery of the equation.
He did not need to know the origin of the energy he used for war purposes when he
used incendiary bombs. The same was true in the construction of the atom bomb.
From the moment the phenomenon of nuclear fission was discovered in the labora-
tory, between 1934 and 1939, and the enormous amount of energy released was
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measured, the construction of the atomic bomb was a matter of time. The only
difference with the past was that, now, the amount of energy released is so great that
the change in the nuclear masses is measurable. Neither Einstein nor the equation
E = mc? should be incriminated. The equation simply gives us the ability to interpret
the origin of the released energy, both in nuclear reactions and in many others.

6.7.1 The Validity of the Conservation of Momentum
and Energy During the Transmutation of Nuclei
and the Annihilation and Creation of Particles

The equation of equivalence of mass and energy is valid in all changes a system
suffers and not only to ‘classical’ processes in which the reacting bodies retain their
form unchanged. In the processes of nuclear Physics and the Physics of Elementary
Particles, the nuclei may decay or suffer fission or fusion and the elementary
particles may be created or annihilated. In these processes, the reacting bodies are
not necessarily the same before and after the reaction. It has been established
experimentally that, in all these changes, momentum and energy, as defined by the
Special Theory of Relativity, are conserved.

It was found that relativistic definitions of mass and momentum make it possible
to conserve both momentum and energy in all inertial frames of reference in the
case of a decaying particle. This is shown in Fig. 6.6a and may be symbolized by
(1) = (2) 4+ (3).

If we reverse time, we have the creation of one body from the collision of two
particles, as seen in Fig. 6.6b, and is symbolized by (1)+ (2) — (3). The con-
servation of momentum and energy in case (a) makes it possible to conserve the
two quantities in case (b) too. The laws of conservation also hold in more complex
cases, such as the one shown in Fig. 6.6¢c where two bodies react to create two other
bodies but with different rest masses. We may assume that, intermediately, a single
body is formed (circle A), which then decays into two bodies. Thus, we have a
process (b) followed by a process (a), again safeguarding the possibility of the
conservation of momentum and energy at all stages. Symbolically, we may write
the equation of the reaction as (1) + (2) — (A) — (3) + (4). By the same method,
more complex processes may be analyzed, such as the interaction of two bodies for
the creation of three, as shown in Fig. 6.6d, with the equation of the reaction being
(D+(2) —=(A) = 3)+(B) — (3)+(4)+(5). In this way it is possible to

(a) (b) (e) |

3
E: 1

Fig. 6.6 Various collisions of point masses in order to form a single body or other bodies with
different rest masses
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conserve relativistic momentum and energy during the interaction of particles for
the creation of other, possibly different, particles. It must be stressed that in these
cases, the rest masses and the velocities of the particles created do not have
uniquely determined values, as may be seen, for example, in the elastic collision of
two identical particles which is examined in Sect. 6.11. Other laws determine which
particles may be created and limit further the range of values their energies and
momenta may have. There exist many such examples which have been studied
experimentally, three of which will be discussed below.

The equivalence of mass and energy and the validity of the laws of conservation
of momentum and energy are demonstrated in a dramatic way in the annihilation of
matter-antimatter such as an electron-positron pair, in the creation of particles from
a photon as in the phenomenon of pair production, as well as in the fission or fusion
of atomic nuclei:

(a) Annihilation of an electron-positron pair. An electron and its antiparticle, the
positron, annihilate completely producing two photons,

e +et —2y.

Since for ‘thermal’ particles the momentum of the pair of particles is initially
almost zero, the two photons have the same energy (511 keV) and move in
opposite directions, in order to conserve momentum. The energy available,
which is entirely due to the rest masses of the two particles, is
2m.c®> = 1.022 MeV, which is shared equally among the two photons.

(b) Production of an electron-positron pair. A photon may produce an
electron-positron  pair, provided it has an energy higher than
2m.c®> = 1.022 MeV. For both momentum and energy to be conserved, the
process can only take place in the vicinity of another body, such as the nucleus of
an atom. The threshold of 2m.c’> = 1.022 MeV in energy exists because this is
the energy equivalent of the two electron masses. If the photon possesses just this
amount of energy in a certain frame of reference, then the two particles will have
zero Kinetic energies, in this frame of reference, after their creation. Photons of
higher energy also impart kinetic energy to the products of pair production.

(¢c) Fission and fusion of atomic nuclei. Another example of the conversion of
mass to energy is observed during the phenomenon of nuclear fission, which
will be examined in the next chapter. During fission, a small proportion of the
rest mass of the nucleus is transformed into kinetic energy of the fission
products. The same phenomenon is observed during the fusion of nuclei.

In the final analysis, the validity of the laws of conservation of momentum and
of energy in the creation or annihilation of particles may be considered to be the
conclusion from the results of countless experiments in modern Physics.
The theoretical proof of the validity of these laws may be based on symmetry
arguments [2]. The conservation of energy is derived from the invariance of the
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laws of Physics during a displacement in time and the law of the conservation of
(vectorial) momentum follows from the invariance of the laws of Physics on the
transportation along the three dimensions of space. If this invariance holds then the
laws of conservation follow. Modern Physics in general and Nuclear Physics and
the Physics of Elementary Particles in particular, are based to a large extent on the
validity of these laws. If nothing else, therefore, we have to admit that the validity
of the laws of the conservation of momentum and of energy in all physical pro-
cesses are based on indisputable experimental evidence. In the examples and the
problems that follow, the usefulness of these laws in the study of physical processes
and phenomena will be demonstrated.

Example 6.4 Conversion of Mass into Energy in a Chemical Reaction

During the combination of 1 kg of hydrogen with 8 kg of oxygen for the production
of 9 kg of water, an energy of approximately 103 J is released. Is it possible to
detect the conversion of mass into energy in this case, using a balance which is
capable in measuring a proportional change in mass equal to 1 part in 107?

The mass equivalent of the energy released is Am = AE /c* = 10® / (3 x 108)*~

10~ kg. This is approximately 1 part in 10'° of the mass involved in the chemical
reaction and cannot be detected with the balance we have or with any other balance
available today.

Example 6.5 The De-excitation of a Nucleus

A stationary excited nucleus returns to its ground state by liberating an energy AE
and emitting a photon. The rest mass of the de-excited nucleus is M. What is the
energy E, of the photon? What fraction of the excitation energy is given to the
nucleus as kinetic energy?

o s M* M /
initially . finally E
l/E'r

The rest energy M*c of the excited nucleus is equal to the rest energy Mc? of the
de-excited nucleus plus the excitation energy AE.
The laws of conservation give:

Conservation of energy M*c* = Mc> + AE = E + E,,, where E = Mc?y.

. E
Conservation of momentum — = Mcyp.
c

1
Therefore, Mc? + AE = Mc*y(1 + ) = Mc? %
/1 AE
from which we get % =1+ Tk
AE 1
This relation may be written in terms of the ratio o = as al = (1+ oc)z.
Mc? 1-p
(14a)*—1 1 (1 +w)?

Solving, f = , = .
e/ (1+a)’+1 (TG
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14+0)? = 1] {14+ (1+a)
It follows that Ev:MCZﬁV:Mcz ( +OC)2 +(1+o)
I+ +1]| 2(1+2)
Mc? (1+oc)2—1 Mc? (? 4 2a
or £, = =
2 1+ o 2 I +oa
AE 4+ -
AE 32 Mc” + 3 AE
and E _CEMeE 5 y=A SN ‘
2 AE Mc* + AE
— +1
Mc?

The energy given to the de-excited nucleus as kinetic energy is

Mc*+ LAE\  AE AE
K=AE—-E,=AE(l ———2 ") =—"(—~——.
! ( Mc* + AE ) 2 (MC2 + AE)
The fraction of the excitation energy which is given to the de-excited nucleus as
kinetic energy is

K 1 AE
AE  2Mc2+ AE’
If it is AE < Mc?, then the fraction is approximately equal to — AE
11 1 1 X1
“ pp Y eqQuatto AE S oM

Example 6.6 The Creation of a Neutral Pion

What is the energy of the n¥ produced during the capture of an antiproton, which is
moving with a low speed, by a stationary deuterium nucleus (p +d — n+n°)? The
rest energies of the particles P, d, n and n° are, respectively, Ey = 938.2 MeV,
Eq = 1875.5 MeV, E,o = 939.5 MeV and E,p = 135.0 MeV.

TIE%
n
A

Before After

]_jo—- e d

Since the initial momentum of the system is negligible, the momenta of n and ° must
be equal and opposite. Let the momenta of the two particles have magnitude equal to
p- The initial kinetic energy is also negligible. The conservation of energy gives

EpO + Eq = En+ Ex (1)

where E, and E; are the energies of n and n°, respectively, while, from the relation
E? = (m0c2)2 + (pc)* we have, for the particles n and 1°

2
(pe)'= B2 — B2 = B2 — EX, 2)

Equation (1) gives E2= (Ey+Esp—E )2

n

and Eq. (2) E} = E2+EL — EX.
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Equating, (Eop + Eoa — En)2: E; +Eg, — Eg,
or (Ey+Ey) —2E,(Ey+Ey)+ B = B +E% —E2,
2 2 2
and, finally, E, = <Ep0 +Ed0) Ero = Eno
2 (EPO + EdO)
Substituting,

(93824 1875.5)% +135.0% — 939.5°

— 1253 MeV = 1.25 GeV.
2(938.2 1 1875.5) © ©

Exr

Example 6.7 The Rest Mass of a Spherical Distribution of Charge due to Its
Electrostatic Energy

Verify Eddington’s statement that, if a quantity of electrons of mass 1 g could be
compressed uniformly into a sphere of a radius of 10 cm, the rest mass of this
sphere, which would correspond to its electrostatic energy, would be of the order of
magnitude of 10 million tons.

We evaluate the electric charge of the spherical distribution. If m, is the mass of the
electron and e its charge, a mass of electrons equal to m will have a charge equal to
Q = em/m.. From theory we know that the electrostatic energy of a charge

3 2
Q distributed uniformly inside a sphere of radius R is Ey = Q .
2077.'80R
3 mPe?
Therefore, Ey = .
erefore, Eo = 7 Orceg n2R
E, 3 mPé?

This energy corresponds to a rest mass My = — = —— .
4 p 0722 T 20megc? m2R

Substituting &y = 8.85 x 1072 F/m, m. =9.11 x 103! kg, e = —1.602 x
107" C and m = 0.001 kg, R = 0.1 m, we find My = 1.86 x 10'° kg or 20 mil-
lion tons, approximately.

Problems

6.12 A spring has a constant equal to k = 2 x 10* N/m. What is the increase in

the mass of the spring when it is compressed by x = 5 cm from its natural length?
Ans.: Am = 2.8 x 10710 kg

6.13 A particle with rest mass m, is stationary in the laboratory. The particle splits

into two others: one with rest mass m; which moves with a speed V; = (3/5)c,

and another with rest mass m, which moves with a speed V, = (4/5)c.

(a) Find m; and m; as fractions of m. Ans.: m; = (16/35)m, mp = (9/35)m

(b) What are the kinetic energies, K; and K5, of the two particles, in terms of m?

Ans.: Ki = (4/35)mc?, K> = (6/35)mc? .

6.14 A particle with rest mass m moves in the laboratory with speed V = (3/5)c.

The particle disintegrates into two others: one with rest mass m; which remains

stationary and another with rest mass m, which moves with a speed of v = (4/5)c.

Find the masses m; and my in terms of m. Ans.: m; = (5/16)m, my = (9/16)m
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6.15 A particle of rest mass m; = 1 GeV/c?> moves with a speed of v; = (4/5)c
and collides with another particle with rest mass m, = 10 GeV/c? which is sta-
tionary. After the collision, the two particles form a single body with rest mass M.
Find:

(a) The total energy of the system, in GeV. Ans.: 11.7 GeV

(b) The total momentum of the system, in GeV/c. Ans.: 1.33 GeV/c

(c) The mass M, in GeV/c?. Ans.: 11.6 GeV/c?

6.16 Show that, if a photon could disintegrate into two photons, both the photons
produced would have to be moving in the same direction as the original photon.
6.17 A neutral pion disintegrates into two photons, which move on the same
straight line. The energy of the one photon is twice that of the other. Show that the
speed of the pion was ¢/3.

6.18 A = particle, which is at rest in the laboratory frame of reference, disintegrates
into a muon and a neutrino: m — p +v. Show that the energy of p is

2

c
E,=— (m,zt + mi - mﬁ), where my, m, and m, are the rest masses of the three

R omy,
2 2 2
(mv +m, — m#>

2

particles, respectively. What is the energy of v? Ans.: E, = 26
6.19 A stationary particle of rest mass M, disintegrates into a new particle of
rest mass m and a photon. Find the energies of the new particle and the photon.
M2 2 M2 2
Ans.: E = lc2, E, = L
2M 2M

6.20 A particle decays, producing a t* and a ™. Both pions have momenta equal

to 530 MeV/c and move in directions which are normal to each other. Find the

rest mass of the original particle. The rest mass of ©* is m,; = 140 MeV/c>.
Ans.: 799 MeV/c?

6.21 A neutral kaon decays into two pions: K® — n* + 7. If the negative pion

produced is at rest, what is the energy of the positive pion? What was the energy of

the kaon? Given are the rest masses of K°, mg =498 MeV / ¢? and the ©*,

my = 140 MeV/c?. Ans.: E; = 753 MeV, Ex = 886 MeV

6.22 A photon which has an energy equal to E, collides with an electron which is
moving in the opposite direction to that of the photon. After the collision, the
photon still has an energy £ and reverses direction of motion. Show that, for this to
happen, the electron must initially have a momentum of magnitude E/c. Also show

that the final speed of the electron is v = ¢ / \/ 1+ (moc2/E)?, where moc? is its

rest energy.

6.23 A particle which has rest mass m; and speed vy, collides with a particle at rest,
which has a rest mass equal to m,. The two particles are united into one body which
has a rest mass M and moves with speed v. Show that v = (my,01)/(myy, +my)

and M? = m%—i—m% + 2y mymy, where y; = 1/\/ 1— U%/Cz'
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6.24 Two identical particles with rest mass m each move towards each other, in the
laboratory frame of reference, with the same speed fc. Find the energy of the one
1+ f

1-

6.25 A particle with rest mass M, moves with velocity v. The particle disintegrates
into two others, 1 and 2, with rest masses m; and m, respectively. If particle 2 moves
in a direction perpendicular to v, find the angle 6 that the direction of motion of

particle in the frame of reference of the other. Ans.: Egp = Exg = moc?

2
particle 1 makes with v. Ans.: tan 0 = L ll — (ﬂy + (@> 2] — (Zy @>2
272 M M M

6.26 A X particle disintegrates, in motion, into three charged pions, A, B and C. The
rest mass of each pion is 140 MeV /c?. Their kinetic energies are, respectively,
Ka =190 MeV, Kg = 321 MeV and K¢ = 58 MeV. The velocities of the pions
form with the x-axis angles equal to 0, = 22.4°, g = 0° and Oc = —12.25°,
respectively. Evaluate the rest mass of the original particle and the direction of its
motion. Ans.: My = 495 MeV/c?, 0 = 5.6°

6.27 A particle with rest mass M, disintegrates, in motion, into two other particles, 1
and 2. Particle 1 has rest mass m;, momentum p; and energy E, while particle 2
has rest mass m,, momentum p, and energy E,. The angle formed by their direc-
tions of motion is #. Show that E\E; — pipac®cos0 =1 (M? —m} —m3)c*, a
quantity that is an invariant.

6.28 A neutral pion with energy E disintegrates into two photons, ¥ — 2y, with
energies E| and E;. Express the angle between the directions of motion of the two
photons, 6, in terms of E, the rest mass mj, of the pion and the variable

¢=(E/2)—E, =E,— (E/2) = (E; — E1)/2. What is the minimum value of this
0 €
angle for E = 10 GeV?Itis given that m,;c> = 0.140 GeV. Ans.: sinz N

VE? — 4g%
Omin = 1.6°

6.29 A A hyperon disintegrates in motion into a proton and a pion (A — p + 7).
These have, in the laboratory frame of reference, momenta p, and p, and
energies E, and Ej, respectively. The angle between p, and p; is equal to 6.
Show  that  the energy  released in  this disintegration is

0= \/ml%c“ +m2c* + 2E Er — 2ppprc? cos 0 — (my, + my)c?, where m,, and my

are the rest masses of the proton and the pion, respectively.

6.30 In the disintegration K® — n* 4+~ both the momenta of the particles pro-
duced both have magnitude equal to p, = 360 MeV/c and form an angle of 70°
between them. What is the rest mass mg of K° in MeV/ c2? For the pions, it is
myc® = 140 MeV. Ans.: mg = 499 MeV/c?

6.31 A K° particle, having a rest energy my c> = 498 MeV, disintegrates into two
mesons, © 1 and ©~, which have rest masses equal to m,. In the frame of reference
of K" both the mesons move with speed 0.83 c.
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(a) Find the ratio m,/mg of the rest masses and the rest mass m;, of the © particles.
Ans.: my/mg = 0.28, m; = 139 MeV/c?

(b) Let the K° particle move with a speed of 0.83 ¢ in the laboratory frame of
reference and the two mesons move on the initial direction of motion of the K°
particle. Find the kinetic energies of the mesons in the laboratory frame of
reference. Ans.: 0 and 616 MeV

6.32 Symmetric Elastic Collision. A particle with rest mass m and kinetic energy

K collides elastically with a particle at rest that has the same rest mass. After the

collision, the two particles move in directions which form equal and opposite angles,

+0, with the direction of motion of the initially moving particle. Find angle 0 in
terms of m and K. Note: In the Special Theory of Relativity, the term elastic collision
implies that the reacting particles remain the same, with the same rest masses,

respectively, before and after the collision. Ans.: tan = +1 / V14K /2mc?

6.8 The Transformation of Momentum and Energy

The momentum and the energy of a particle in a frame of reference S is p = mpypv

and E = moypc?, where yp = \/llﬁ is the Lorentz factor for the particle in the
—b°/C

frame of reference in which it is being observed. Therefore,

dx dy dz E
Px = mo?pE, Py = mO?PEa Pz = moha; C—2 = mpYp. (6-46)

If time dt elapses in the laboratory, the corresponding time interval in the frame
of reference of the particle (the particle’s rest time or proper time), is dt = dt/yp.
So, equivalently, Eq. (6.46) may be written as

dx dy dz E dt
x = 7 - — = e — = —_—. 6.47
p o dt Py = o dt Pz = Mo dt c? o dt ( )
In frame S’,
Y’ dy i F dr’
/ = _— / = _— / = e —_— = - . 648
Py =10 dt’ Py =™Mo dt’ P, = 1o dt’ c? o dt ( )

Given that the magnitude dt remains invariant under a transformation from one
inertial frame of reference to another and the same is true for m,, these relations show
that the magnitudes p,, py, p, and E/ ¢? transform like the magnitudes x, v, z and ¢,
respectively.

Alternatively, we may use the differential form of the Lorentz transformation for
X, y, z and ¢ from frame S to frame S’



