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Outline of the lecture

* The concept of probability

* Random variable

* Measures of central tendency (mean, mode, median)
* Measures of dispersion (variance)

* Measures of shape (skewness, kurtosis)

« Functions of random variables (sample mean, sample variance)



The concept of probability

An experiment is any physical procedure which can end up with a result from

a set of possible outcomes, and the experiment can be repeated (up to) infinitely
many times.

The final result « of an experiment is called an outcome and

the set 1 of all the outcomes is called the sample space.

An event E is a set of outcomes, i.e. a subset of the sample space (E € Q).

An elementary event is the singleton E = {w} for any outcome w € (.

The impossible event is the empty set E = 0.

The certain event is the sample space E = () itself.



The concept of probability

The event space F is the collection of all (measurable) events. The event space

F is a g-algebra of the subsets of the sample space {1 (i.e. Q € ¥ and, for any
E,E{,E, E; ..€F, wehave O\ E €F and U2, E; € F).

The event space contains all subsets of the sample space {(i.e. F={E:EcQ})
especially in discrete cases, i.e. when the sample space is finite (0 ={1,2,...,N},
e.g., when tossing a coin, rolling a dice, etc.) or countably infinite (& ={1,2,3,...}).



The concept of probability

The event space does not contain all subsets of the sample space

(ie. F#{E:Ec}) especiallyin continuous cases, when the probability is
defined in the geometrical way or when dealing with many standard continuous
probability distributions (normal, exponential, uniform, etc.), i.e. when the

probability is connected with the Lebesgue measure on the real numbers R.

It holds in general only that
PcFc{E:Ec}

When considering an event E, we shall always mean an event such that E € F.



The concept of probability

By Kolmogorov's definition, the probability is a function P:F - R such that

P(Q) = 1 and, for any pairwise disjoint events E,E,, E,,E3, ... € F, we have
P(E) 2 0 and P(Ui2; Ey) = X2, P(E).

Despite this elegant definition, which allows us to grasp the concept of the
probability mathematically, there are several interpretations what the probability
actually is:

 classical definition (“all the elementary events are ‘equally likely’ to occur”)

+ frequentist definition (repeat the random experiment infinitely many times)

« Bayesian probability



Random variable

Consider a probability space, i.e. a triple (Q,F,P) where

« ) is the sample space (the set of all possible outcomes of a random experiment)
« F isthe event space (the collection of all measurable events)

« P is the probability (a non-negative g-additive function P: F — R such that P(Q) = 1)
A random variable is any function
X:0—R

which is measurable, i.e. the preimage of any open interval is an event
(X Y(a,b)) ={wen:X(w) € (a,b)} e F forevery a,b €R such that a < b).



Random variable

Since the sample space () Is the set of all possible outcomes of a random

experiment and the random variable X is a {measurable) function X:Q — R, the
random variable can be seen as the numerical ouicome of the random experiment.

Notice: Any quantitative (numerical) data item of the data units of the dataset

can be seen as a random variable.



Random variable

Let a probability space (&,F,P) be given. Since the random variable X is a
(measurable) mapping X: £ = R, if follows that the distribution of the (numerical)

values of the variable X is governed by the probability P.

To simplify the matters significantly, we shall assume from now on that

there exists a probability density function of the probability measure P.



Assumptions to simplify the matters

Woae shall assume in particular that exactly one the three case arises:

. the sample space ( is finite

Il. the sample space {2 is countably infinite
lll. the sample space Q=R

Each of the casas is discussed in detail below.



Assumptions to simplify the matters

Case |: The sample space £} is finite, such as

() = {heads, tails} (when tossing a coin)
) = {up, down} (when tossing a tack)
0 =1{1273,4,56} (when rolling a dice)
Etc.

We may assume in general that
0={1,2..,N}

where N is the number of slements of the sample space ().



Assumptions to simplify the matters

Case |lI: The sample space () is countably infinite, such as
N=1{1,2345,..}

N ={0127345,..}
0={.,-3-2,-1,0,+1,4+2,43,..}
Etc.

To illustrate the second example (@ ={0,1,2,...}),

consider the next random experiment:

Tossing a coin, count the number of “heads” until the first “tails” occur.



Assumptions to simplify the matters

Cases | & |I: If the sample space is finite (@ ={1,2,..,N}) or
countable (@ ={1,2,3,..}) we assume that the event space F is

the collection of all subsets of the sample space, i.e. F =22 i.e.
F={E:Ec}

Then there exists a probability mass function of the given probability P.



Probability mass function

Given the probability space (Q,F,P), the probability mass function

of the probability measure P is a function
pQ-R
such that it holds

P(E) = Z p(w) foreveryevent E€F
WEE



Probability mass function

In the cases | & Il, when the sample space & isfinite (Q ={1,2,...,N}) or
countable { ={1,2,3,..}),and F = 2%, the probability mass function

p: £}l =» R clearly exists. Itis enough to put
w) = P({w}) forevery w € )
Then
P(E) = Z p(w) for everyevent E € F
WEE

Notice also that
p(w) € [0,1] forevery w € Q)



Assumptions to simplify the matters

In the cases | & Il, when the sample space Q is finite or countable and F = 2%,
the probability mass function p Is also the density function of the probability P

with respect fc the counting measure.

The counting measure « is a function such that a(E) = |E|, the number of
elements of the set E ifthe set E is finite, or a(E) = +oo ifthe set E is infinite.

Then
P(EY=") p(w) = f p(w) da
wWEE E



Assumptions to simplify the matters

Recall that, in the cases | & Il, when the sample space £ is finite or countable,

and F = 2%, we assume that the random variable X is any function
X:0-R

Case |ll: We assume that
» the sample space {1 =R is the set of the real numbers
« the event space F is the collection of all Lebesgue measurable subsets of R
« the random variable X is the identity function
X:R->R X(x)=x forevery x€R



Probability density function

Given the probability space (Q,F,P), the probability density function

of the probability measure P with respect to a reference measure A on (Q,F)

is a {measurable) function
:Q-R
such that it holds

P(E) = f flw)dA for everyevent E € F
E

(The integral on the right-hand side is the Lebesgue integral.)



Lebesgue measure and Lebesgue integral

It is beyond the scope of this lecture to construct the Lebesgue measure A on R,

the collection of the Lebesgue measurable sets, and to infroduce the Lebesgue
integral. That is why we shall work with the integral “intuitively”.

Indeed, if the density function f:R — R is continuous andtheevent E € F is
an interval E = (a,b),[a,b),(a,bl,[a,b] (with—co <a <bh <+, but oo & E),
then

P(E) = fE Fx) dx = f ) dx



Lebesgue measure and Lebesgue integral

Actually, the latter case (the event E is an interval and the density function f is

continuous) is the only case which we shall need in practice.

By seeing the Kolmogorov theory of probability as a special case of the measure

theory, we could treat all the cases |, |, and |l in a uniform way (together at once).

For “simplicity” (because the measure theory is beyond the scope of this lecture),
however, we freat the cases | & Il and the case lll separately.



Assumptions to simplify the matters

Cases | & lI: We assume for simplicity that
« the sample space L is finite or countable (suchas QO ={1,..,N}orQ={1,2,..})

« theeventspace F =22 ={E:E c Q} isthe collection of all subsets of {

* the random variable X is any function
X:0-R
X:o v~ X(w) forevery w € Q)
* and there exists a probability mass function p:{} - R such that

P(E) = Z p(w) for everyevent E €F
WEE



Assumptions to simplify the matters

Case |ll: We assume for simplicity that
* the sample space =R is the set of the real numbers

* the event space F is the collection of all Lebesgue measurable subsets of R
* the random variable X is the identity function

X:R->R

Xixox forevery x€R

« and there exists a continuous probability density function f:R — R such that

P(E) = f f(x)dx for everyevent E €F
E



Examples of random variables - i;%

There are 100 rooms in some hotel.

The number of the occupied rooms is a random variable X.
The possible values of this random variable are numbers 0, 1, 2, ..., 100.
In other words, the range of the random variable is the set {0, 1, 2, ..., 100}.

The probability mass function of the random variable X may look, e.g.,
like this: p(n) N

Z r(n) =1
n=0

I
0 10 20 30 40 50 60 70 80 90 100



Examples of random variables - i;%

A company’'s employees’ salary per year can be seen as a random variable X.

The salary per year is in the range from 100 000 to 600 000 of monetary units.
Seeing the salary as a continuous random variable, then

the probability density function of the random variable X may look, e.g.,

like this:
A

!
1000J 000 6007 000

600 000
f fx)dx=1
100 000




Examples of random variables - QE

The lifetime of a product (such as a bulb) is a continucus random variable X.

This random variable ¢can attain any non-negative value.
The probability density function of the random variable X may look, e.g.,
like this:

A

L+°°f(x) dx=1

fx)

0 >time




Examples of random variables

The “wheel of fortune”.

The customer rotates the
wheel and, depending upon
the final position, the discount

of the price is deduced.



Examples of random variables

Example: The “whesl of fortune”.
The sample space: 0 =1{A,B,C,D,E,F,G,H,1,]}

Table: c Xo = X(w) n, Po = P(®)
Discountin % Frequency Relative frequency
A 112 112 112 %
B 114 125 125 %
C 115 124 124 %
D 116 017 117 %
E 120 115 115 %
F 130 103 1003 %
G 150 01 101%
H 170 001 101 %
I 180 001 101%
J 100 01 101%
] TOTAL 100 100 %




Examples of random variables

Bar chart — the frequencies (numbers) of the ordinal data item “Discount”:

25
Frequency 25 24

20

17

15

15

12

10

0 — S
12 14 15 16 20 30 o0 70 80 100 Discount




Examples of random variables ?e%

The graph of the probability mass function of the random variable X

025 —| p(X71(12)) + p(x 1 (10) + (X 1(15)) + p(X71(16)) + p(X 1 (20)) +
. +p(X71(30)) + p(X~1(50)) + p(X2(70)) + p(X1(80)) + p(X~1(100)) =

- p(4) +p(B) + p(C) + p(D) + p(E) + p(F) + p(G) + p(H) + p(I) + p(J) = 1

. p(X~(d))

0 IIII|IIII|II [

0 10 20 30 40 50 60 70 80 90 100

Discount



Probability mass function & Probability density function

Cases | & lI: Recall that a probability mass function is any function p:Q - R
such that

Z pw)=1 and p(w)=0 forevery w €

well

Case lll: Recall that a probability density function is any function f:R - R
such that

+60

flx)dx=1 and f(x)=0 forevery x€R

-0



Cumulative distribution function

Let (0, F,P) be a probability space and let X:Q = R be a random variable.

Then the cumulative distribution functlon of the random variable X

is the function

F:R->R
defined by

F(x)=PHlwel: X(w) <x})

Notice that the expression “P({w € Q1 : X(w) < x})” is often written as “P(X < x)”
for short.



Cumulative distribution function

The cumulative distribution function F(x) = P(X <x) is

— non-decreasing

— righi-confinuous

and it also holds

lim F(x) =0 and lim F(x) =1

X=>—0C0 x=+c0

Moreover, any function F:IR = R that satisfies the above properties

is the cumulative distribution function of some random variable.



Cumulative distribution function

By the definition

F(x)=P(X £x)
=P{wel:X(w)xx}

of the cumulative distribution function, it follows that

Pla<X<hb)=
Plwel:a<X(w)<b}) =F(b)—F(a) forevery a,b€ER



Examples of cumulative distribution functions 5&&

Example: Rolling a dice. The random variable: X(x) = x
The sample space: 21=1{1,2,3,4,5,6} The probability mass function: p(x) = %
The graph of the cumulative distribution function of the random variable X
1 °
F(x)
5/6 — e—oO
4/6 — e—oO
3/6 — e—O
2/6 — —oO
1/6 — ——oO
0 O | | | | ~
1 2 3 4 5 6




Examples of cumulative distribution functions

F(x)

An example of a cumulative
distribution function of a

continuous random variable.

Recall that F is non-decreasing,

xl_i)r_nooF (x)=0
and
lim F(x)=1

X—+00



The cumulative distribution & the density function

Case |ll: Let (,F,P) be a probability space where the sample space 1 =R,
the event space F is the collection of all Lebesgue measurable subsets of R,
and the probability P is such that there exists a continugus probability density
function f such that P(E) = j'E f(x)dx foreveryevent E € F.

Consider the identity random variable X(x) = x forevery x € R.

Then

F(x) = f_x f)de and f(x)=F'(x) forevery x€R



The cumulative distribution & the density function

Case lll: Let (£2,F,P) be a probability space where the sample space 0 =R,
the event space F is the collection of all Lebesgue measurable subsets of R,
and the probability P is such that there exists a continuous probability density
function f such that P(E) = IE f(x)dx foreveryevent E € F.

Consider the identity random variable X(x) = x forevery x € R.

It holds by definitions

x

Fx)=PX<x)=P{teR:—-owo<t<x}PD=] fFflt)dt

By the fundamental theorem of calculus,

fx)=F'(x) forevery x€R



The cumulative distribution & the density function

Case lll: Let (£2,F,P) be a probability space where the sample space 0 =R,
the event space F is the collection of all Lebesgue measurable subsets of R,
and the probability P is such that there exists a continuous probability density
function f such that P(E) = IE f(x)dx foreveryevent E € F.

Consider the identity random variable X(x) = x forevery x € R.
If —0o <a<b < +00, then it holds by the continuity of the density function f that

f(x)dx = f(x)dx = f(x)dx = f(x)dx

(a,b) [a.b) (a.b] [a.b]
hence

b
P(a<:X<b)=P(aSX<b)=P(a<X5b)=P(a£X£b)=f £(x) dx



The probability of an event

Let the probability density function of a random variable X

(the employees’ salary per year) look like this:

600 000

f fxydx=1
— f(x) 100 000

[
100(7 000 25007 000 60071 000

Then the probability the salary of an employee is in the range from 100000 to 250 000, say, is:

P(100000 < X < 250000) =

250000

= P({x € [100 000,600 000] : 100000 < X(x) < 250000}) = f f(x) dx
100000




Measures of
central tendency

 Mean / Expected value
* Mode

* Quantile

* Median

* Quartiles

* Declles

* Centiles



The mean / expected value

The expected value (or the mean value) of the random variable X is denoted by

p or  E[X]
Cases | & II:
k=EX] = ) X(w)p(w)
WEQ
Case |ll:

u = E[X] = f_ xf (x) dx



The mode

Roughly speaking, the mode of the random variable X is the most probable value

that the variable will attain.
Altemnatively, the mode is the most frequent value of the random variable X

(cf. the frequentist definition of the probability).

The definition of the mode is different for discrete variables (cases | & 1) and

for continuous variables (case lll).



The mode

Cases | & II: Let (Q,F,P) be a probability space where the sample space () is
finite or countably infinite, the event space F = 22, let p be the probability mass

function of the probability P, and let X:{} = R be a random variable.

The number X € R is a mode of the random variable X if and only if

Z} pw) = Z; plw) for everyother x € R
e we

X(w)=X X(w)=x



The mode

The graph of the probability mass function of the random variable X

A
0.25 —

- Mode: X = 14

. p(X~(d))

I I I I
0 IIII|IIII|II [ IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|

0 10 ™ 20 30 40 50 60 70 80 90 100

Discount



The mode

Example: Some example with some probability mass function.

The sample space: 1=1{1,2,3,4,5,6} Therandom variable: X(x) = x

Mode: X = 4

p(n)




The mode

Example: Some example with some probability mass function.

The sample space: 1=1{1,2,3,4,5,6} Therandom variable: X(x) = x

Modes: X =1,4,6

p(n)




The mode

Example: Rolling a dice. The random variable: X(x) = x
The sample space: 21=1{1,2,3,4,5,6} The probability mass function: p(x) =

o=

Modes: X =1,2,3,4,5,6

p(n)




The mode

Case lll: Let (Q,F,P) be a probability space where the sample space (=R,

the event space F is the collection of all Lebesgue measurable subsets of R,
let f be the probability density function of the probability P, assume that f is

continuous, and let X(x) = x forevery x € R.

The number X € R is a mode of the random variable X if and only if

there is a local maximum of the density function £ at the point X



The mode

The mode is any point

A
S(x) at which the density

function f(x) attains

its local maximum.

| Mod(X) 4 5 6 7




The mode

If the random variable is discrete (i.e. there is a probability mass function of the
given probability measure P) or the random variable is continuous and there is
a continuous probability density function of the given probability P, then there

exists at least one mode of the random variable X.

In other words, under our assumptions {cases | & Il or |}, at least one mode
of the random variable X exists.



The mode

Remarks:
* If the random variable is continuous, but the probability density function of the

given probability P is not continuous, then the mode of the random variable may
not exist.

* If the random variable is continuous and there exists no probability density
function of the given probability P, then the mode of the random variable can not
be defined at all !



The mode

Remarks:
* There may exist more than one mode.

* The probability distribution is termed:

— unimodal, if there is exactly one mode

— bimodal, if there are exactly two modes

— efc.

— multimodal, if there are several modes




Quantile

Let (Q0, F,P) be any probability space and let X:Q2 - R be any random variable.
Then the quantile corresponding to a given probability p € [0,1] with respect to
the cumulative distribution function F(x) = P(X < x) of the random variable X

is the value x, € R such that
PX<xp)<p<P(X<xp)

Since the cumulative distribution function F(x) = P(X < x) of the random
variable X is right-continuous, it is equivalent to say that the quantile is

the least value x, € R such that
p <P(X <xp)



Quantile

Let (Q0, F,P) be any probability space and let X:Q2 - R be any random variable.
If the cumulative distribution function F(x) = P(X < x) of the random variable X

Is continuous and sfrictly monotonically increasing, then the quantile is the value

Xy, € R such that
P(X < xp) =p

x, = F~1(p)

where F~1 s the function inverse to the cumulative distribution function F.



Quantile




3

Median

Let (Q,F,P) be any probability space and let X:Q - R be any random variable.
Then the median with respect to the cumulative distribution function

F(x) = P(X < x) ofthe random variable X is the quantile corresponding
to the probability p = 0.5, i.e. the value X = x,: € R such that

1
P(X < xg5) < > < P(X < x¢5)



Quartiles

Let (Q,F,P) be any probability space and let X:Q - R be any random variable.
There are three quartiles with respect to the cumulative distribution function

F(x) = P(X < x) ofthe random variable X. The quartiles are:
Q4 = x4.25 --. the first quartile or the lower quartile
.. it is the quantile corresponding to the probability p = 0.25
0, =x55 ... the second quartile or the median
.. It is the quantile corresponding to the probability p = 0.5
4 = xg9.75 ... the third quartile or the upper quartile
.. it is the quantile corresponding to the probability p = 0.75



Quartiles

Notice that the difference

IQR=0Q3—- @

is also called the interquartile range, the “midspread” or the “middle fifty”.



Median & Quartiles

A

f(x)

1

A

I A

Med (X) | 4

lower quartile upper quartile




AN

Deciles AN

Let (Q,F,P) be any probability space and let X:Q - R be any random variable.
There are nine deciles with respect to the cumulative distribution function

F(x) = P(X < x) ofthe random variable X. The deciles are:

D1 =x41 Dy =x44 Dy =x¢7
D; =xq2 Dy = x5 Dg =xp3
D3 =x03 D¢ =x4¢ Dy =xp9

The fifth decile (D5 = x,5) is the median.



AN

Centiles LA

Let (Q,F,P) be any probability space and let X:Q - R be any random variable.
There are ninety nine centiles with respect to the cumulative distribution function

F(x) = P(X < x) ofthe random variable X. The centiles are:

€1, =Xp.01 Co7 = Xp.97
C2 = X002 Cs0 = Xo5 Cog = Xp.08
C3 = Xg,03 Co9 = Xg.99

The fiftieth centile {Czq = x¢5) is the median. The twenty fifth centile and
the seventy fifth centile (C;5 = xy25 and C;5 = x475) is the lower quartile

and the upper quartile, respectively.



Mode & Mean & Median may differ

Example: The probability density function of a random variable is

3
fy =z *=1
0, x<1

o0 +oo
Observe that fm f(x)dx = [_?13]1 =0+1=1
Mode: X =1




Measures of
dispersion

* Variance

« Standard deviation




Variance - ﬁ

Let (£}, F,P) be any probability space and let X:Q — R be any random variable.

Assume that the expected value E[X] of the random variable X exists.

Noftice that the sum E[X] = 3 ,cq X(w)p(w) (in the case II) or the integral

E[X] = [ xf(x)dx (inthe case Ill) may diverge, i.e. either not exist at all or

exist but diverge to the value 4o Or —co,



Variance

Let (Q,F,P) be any probability space and let X:Q - R be any random variable.
Assuming that the expected value E[X] exists and is finite,

the variance Var(X) of the random variable X is

Var(X) = E[(X — E[X])?]



Variance - ﬁ

Cases | & lI:

0? =Var(X) = ) (X(w) - EX]p(w)

well

Case llI: .
o2=Var(X)=| (x=E[X])*f(x)dx

-0

Notice that (even if we assume that E[X] exists and is finite),
the variance may be infinite (Var(X) = +o) sometimes.



Variance - ﬁ

Let (Q,F,P) be any probability space.
Llet X: Q- R and Y:2 - R be two random variables.

Considering the definition of the expected value (see above) and
by the properties of the sum or the integral, the following equations
are easy to see under the assumption that both E[X] and E[Y] are finite:

E|X + Y] = E[X] + E[Y]
E[cX] = cE[X] forevery c€R



Variance - QE

The next formula holds if E[X] exists and is finite:

Var(X) = E[(X — E[X])?]
= E[X2 — 2XE[X] + (E[X])?]
= E[X?] — E[2XE[X]] + (E[X])?
= E[X?] — 2(E[XD(E[XD + (E[XD?
= E[X?] - (E[X])?

Remark: The formula may be useful in the case | to compute the variance
efficiently: Var(X) = Z,ea X?(w)p(w) — Epea X (@)p(w))?.



Standard deviation

The standard deviation is the square root of the variance:

o= Var(X) = Jo?



Measures of shape

« Skewness

o Kurtosis




Skewness & Kurtosis %?A%

Let (Q,F,P) be any probability space and let X:Q - R be any random variable.
Assume that the expected value E[X] of the random variable X exists.

Pearson’s moment coefficient of skewness is

3
~_|{x -EIx]
Skew(X) =E [( JVar(X))

Pearson’s moment coefficient of kurtosis is

4
| (x—ELx]
KurtX) = £ (JVar(X))




Skewness: Properties and interpretation

Pearson’s moment coefficient of skewness
(x— e\’
Skew(X) = E ( ) ]

can be positive or zero or negative.
— Skew(X) < 0 — the majority of the values is left to the mean

— Skew(X) = 0 — the values are distributed = symmetrically around the mean

— Skew(X) > 0 — the maijority of the values is right to the mean

Large positive or negative value — there are "outliers”, i.e.
values far away from the mean



Kurtosis: Properties and interpretation

Pearson’s moment coefficient of kurtosis

4
|/x -k
Kurt) = B (JVar(X)) I

can be positive or zero.
— Kurt(X) =2 0 is small — the values are concentrated = around the mean
— Kurt(X) > 0 islarge — there are “outliers”, i.e.
values far away from the mean

The Skewness & Kurtosis describe the shape of the distribution of the values.



Functions of
random variables

« Sample mean
« Sample variance

« Sample standard deviation




Statistic

Let (£}, F,P) be a probability space and let X;,X5,..,X,: 0= R be
random variables. A statistic is any function (a formula or an algebraic

expression) of the random variables:
Y = f(Xl,Xz, '“lX‘H.)

Notice that the statistic is a new random variable.



Sample mean & Sample variance

The most frequently used statistics are:

Sample mean:

Sample variance:



Sample variance & Sample standard deviation

Notice that the sample variance satisfies the next equation:

5* =niizm_2)2 ] ZH(:— 1)ii(xf'xf)2

i=1 j=1

Once the sample variance s? is known,
the sample standard deviation is

n
1
s =452 = mZ(Xt — X)?
\ i=1




The measures of the statistics

The sample mean:

E[X] = u
Var(X) = %2
The sample variance:
E[s?] = ¢?
The sample standard deviation:

E[s] =0



* The expected value of the sample mean

The expected
values of the
functions of
random variables

* Independent events

* Independent random variables

* The variance of the sample mean
* The expected value

of the sample variance




The expected value of the sample mean

Assume that the expected values E[X,] = E[X,] = --- = E|X,,] = 1.
Then

- - - n n
1 1 1 1
E[X] =E E;Xi. _7_1E lei _EZE[XE]_;Z"I:#

i=1



Independent events

Let (), F,P) be a probability space.
We say that evenfs A,B € F are independent if and only If

P(AnB) =P(A) x P(B)

so that

P(AnB) P(AP(B) _

_P(AnB) P(AP(B) _
B -~ P@ ~FW ad  PEBlA=

P(A|B) = PA - PA) = P(B)

PB)+0 P(A+0



Independent random variables

Let (), F,P) be a probability space.

We say that random variables X,Y:Q = R are independent if and only if

PlweQ:X(w)<aln{we:Y(w)<hb}) =

=P{weN: X(w)<ad)XPH{we:Y(w)<hb} forevery a,b€R

in short:

PAX <aln{y<bh) =PHX <a}) X P({Y < b}) forevery a,b€R



Independent random variables: Theorem

Let (£}, F,P) be a probability space and let X,Y:Q - R be independent
random variables such that the expected values E[|X|] and E[|Y]|] are finite.
Then

E[X x Y] = E[X] % E[Y]

We prove this statement in the case |, when the sample space  is finite
(Q =1{1,2,...,N}). The proof uses limiting steps and some advanced results

{Levi’'s Theorem) of the theory of measures and the Lebesgue integral.



Independent random variables: E[XY] = E[X] E[Y]

Proof (in the case |): Let

{x, %2, 0, X} ={X(w):w€N} and vy e} ={Y(w):wen}
be the ranges of the random variables X and Y, and let the ranges be finite.

(if the sample space Q is finite [the case l], then so are the ranges.) Then

E[XXY] =sziijXP({X =xi}n{l’=yj})

i=1 j=1



Independent random variables: E[XY] = E[X] E[Y]

E[X X Y] =ZZx,_ Xy X PX =x3n{y =y}) =

i=1 j=1

ZZx; x yy X PUX = x}) x P({Y = y;}) =

i=1 j=1

|

= z x; X P({X = x;}) X Z y; X P({Y = y;}) = E[X] X E[Y]

=1



Independent random variables: Theorem li

Let (£}, F,P) be a probability space and let X’,X":Q = R be independent
random variables such that the expected values ¢’ = E(|X’|) and g’ = E(|X"])

are finite. Then
E[(X' —p)X" —p")] =0

Proof;
E[(X: . #I)(XH . #H)] —_ E[X'X" _Xrun _ ﬂ"X" + #run] —
— E[X'X"] _ E[X,ﬂ"] _ E [ul'Xn'] + E[l.l,ﬂ"] —
= E[X'JE[X"] - E[X']0" - WEIX"] + w'n" =



The variance of the sample mean

Assume that the variances Var(X;) = Var(X,) = --- = Var(X,)) = o
and that the random variables X,,X5,..,X; are pairwise independent.
Then




The variance of the sample mean

Var(X) = —E Z(x u)2+ZZ(x 00 —1)

i=1j=
l#—']

ZE[(X u)2]+ZZE[(X -w(% -] | =

=1 j=
l#—']




The variance of the sample mean

If X; and X; are independent, then E[(X; —w)(X; —pu)] =0

Var(®) = [ ) Eltt - 7] +ZZ E[(X; - (X - )]
i=1 j=1

i=1
i=]

%(Z E[CX; - u)ZJ)

1

iy
|

1
n2

2

0'2
a' —
n

P~
gt

i



The expected value of the sample variance

Assume that the expected values E[X,]| = E[X,] = :«» = E|X,,] = 4,

that the variances Var(X,;) = Var(X,) = --- = Var(X,,)) = ¢%,
and that the random variables X;,X,, ...,X,, are pairwise independent.
Then

E[52]=Eni1 ]

ITIZ X——;x) _
1 1ZE(X__ZX) _

i=1



The expected value of the sample variance

E[s?] =

n—1

n
>
i=1

2
n
1
j=1

n n n ]
2 2 1
XE=2Xi) X+ X ) K

j=1 j=1 k=1

——XZ ——ZXX + zz
n
=1k
ut;

2
Z;XX;c +nsz

j*k




The expected value of the sample variance

j=1k=1
j*k

1
E[sz]=m2E ——XZ——ZXX +nZZZXXk+nZZXZ
i lqt] |

ZE[XX] +nZZZE[XXk] +nZZE[X2]

=1 Jj= j=1k=1 j=
1#] J*k



The expected value of the sample variance

Recall that E[X;] = --- = E[X,,] = and Var(X,) = --- = Var(X,,) = o7,
and o2 = Var(X;) = E[X?]| — (E[X;])? = E[x?] — #® in general. Hence
E[X}?] = u? + o2 forevery i =1,..,n. Since X; and X; are independent, we
have E[X;X;] = E[X;JE[X;] = u? forevery i,j=1,..,n when i # j. Therefore

n

1 n—2 2 n 1 n n 1 n
E[s*] =—= TE[th] - EZ E[Xf_Xj] + ?Z Z E[X_;Xk] + FZ E[ij] =
f=1 k=1 =1

n—1¢4
i=1 J=1
2] J*k

(n—Z n—1, n(n—1)

2 L 2y _
n(y+cr) 2nu+ —

L

,,,

ey
Il

1



The expected value of the sample variance

n—2 n—1 nn—1) n
( u’ + ) H2+ﬁ(ﬂz+02))=




An alternative formula for the sample variance

Wae have noticed that the sample variance satisfies the next equation:

1 n _ 1 n n )
sz=n—1;@fi_x)z - 2n(n—1);;(xf_xf)

To see the equation, note that:

n

n n
1
Zm pre3 (-15x) <3 (- 2x 2305w
i=1 = i=1 j=1 j=1 k=1

i=1 i

n

n 1 n T
IRCEODIRLS

j=1 i=1j=1k=1

:SIN
gLl

il
=y
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