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Outline of the lecture

* Central Limit Theorem: the Lindenberg-Lévy Theorem
« Sampling and survey data collection
— sampling with replacement
— sampling without replacement
* Point estimates
— point estimates for the population mean and for the population variance
* Interval estimates

— interval estimates for the population mean and for the population variance



Normal distribution

The graph of the probability density function & cumulative distribution function

of a normal random variable X ~ ¥ (u,0%) with u = 0:
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CLT: Lindeberg-Lévy Theorem

Let X, X5, X5, ... be a sequence of independent & identically distributed

random variables with finite expected value E[X;] = ¢ and with finite variance

Var(X;) = ¢%. Then

P({wenﬂzﬁ(xi(w1)+"'+x“(w")—p)<x})—>fx ! ze'thzzdt

n —co V2O

for every x € R.



CLT: Lindeberg-Lévy Theorem in brief

We have:
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CLT: Lindeberg-Lévy Theorem in brief

We have:
X+ -+ X, ) ) J‘"’ 1 _£2
Pin — <Xt e 204t as n-—o o
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or
or
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CLT: Lindeberg-Lévy Theorem in in other words

In other words, we approximately have:

n

. -

X +X,++X o2
1 2 “—,uﬂ-.N(O,—) as n—oo
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Example: Invoices - QE

We have a population of 1250 invoices for amounts between 100 and 10000 units
of money. The frue population characteristics are

p=5097 and 0%2=17015625 or o= 4125
(We usually do not know these characteristics.)

Take a sample of 50 invoices out of the population of the 1250 invoices.

There are up to
(1250

. 89
=0 ) 8.53 x 10

such samples.



Example: Invoices - ﬁ

There are up to
(1250

— 89
50 ) 8.53 X 10

of 50-element samples out of the 1250-element population.
We, actually, take 500 various 50-element samples.

The sample average amount of the samples is in the range
between 3800 and 6400 units of money.



Example: Invoices

The table ~ Frequency Relative
Interval of the sample mean
~ (number) frequency
of the frequencies 3800 < x < 4000 001 0002 %
4000 < x <4200 102 110.4%
for the sample mean 4200 < X < 4400 117 10134 %
4400 < X < 4600 139 107.8%
of the 50-element 4600 < X < 4800 52 710.4 %
4800 < x < 5000 185 117.0 %
samples: 5000 < X < 5200 110 122.0 %
5200 < x < 5400 177 115.4 %
5400 < x < 5600 64 112.8 %
5600 < x < 5800 137 107.4%
5800 < x < 6000 710 112.0%
6000 < x < 6200 1014 110.8%
6200 < x < 6400 102 110.4 %
500 100.0 %




Example: Invoices

Histogram — the relative frequencies of the sample mean — 500-element sample:
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Example: Invoices

Histogram — the relative frequencies of the sample mean — 5000-element sample:
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Sampling and survey data collection 5&&

* The population is often very large, or the population may not be clearly specified
In practice.

« Sampling is a method to obtain a relevant sample of the entire population.

« The sample should be representative, i.e. its structure should follow the
structure of the entire population.

« Sampling plan (random sample, etc.) — see below.

« The methods of collecting the data:

— [opinion] poll, survey
— questionnaire
— on-line / telephone / mail / face-to-face / ...



Sampling and survey data collection

« Arandom sample is the collection of pairwise independent values

of a random variable.

[Recall: Given the probability space (Q,F,P), a random variable is any
measurable function X:( — R. Any outcome « € ) is the result of the
random experiment. We then obtain the value X(x) of the random variable.
Recall also that we consider 2 =R and X(x) = x for simplicity

if the random vaniable X is continuous.]



Sampling and survey data collection

« Simple random sampling — each element has equal chance of being selected.
« Systematic sampling.

« Stratified sampling.

« Cluster sampling.

* Accidental sampling.



Sampling with and without replacement

Replacement of selected units:

« sampling without replacement:

— an element can appear no more than once in the sample

* sampling with replacement:

— an element can appear several times in the sample

Note that sampling without replacement is often the case in practice.



Point estimates & Interval estimates

There are two kinds of estimates:

* polint estimates — we directly calculate the estimate as a single number, e.g.
— the sample mean x estimates the population mean u
— the sample variance s estimates the population variance o2

* interval estimates — the purpose is to find an interval [a,b] such that the
probability that the estimated value (the mean, the variance) belongs to the
interval is sufficiently high, =2 95 %, say, = 1 — a where « is the
significance level (most popular valuesare a=5%, a=1%, or a = 10 %)
and (1 —a) is the confidence level.



Point estimates

Woae already know some point estimates:

 The sample mean is an estimate of the population mean:

¥y
— Ei:‘]_ xl,
X = e
n 2

» The sample variance is an estimate of the population variance:

2 ?:1(1:!: - 'f)z
57 = ~
n—1




Point estimates

The point estimate is an expression or formula, i.e. a statistic f,(x4, ..., xn),

of the sample values x,..,x, (suchas X% = f,(x1, ..,Xp) = 2tq Xp/n OF
s% = f(xq, e, X5) = 2l1(x; — X£)%/(n — 1)). It should possess the following
three properties at least:

 Unbiasedness
« Consistency
» Efficiency



Point estimates

Unbiasedness — the expected value of the estimator £, should be equal fo the

estimated value. We already know that
E[x]=u¢ and  E[s?] = o2

i.e. the sample mean and the sample variance are unbiased estimators.



Point estimates

Consistency — if the estimator f, is unbiased, then the condition sufficient for

consisfency is that
Var(fu(x1, », %)) =0  as n-o o

We already know that
2
Var(X) = % (always)
and it holds (see below) that
2(0?)* . .
Var(s?) = (if the sampled variables are normal)

n—1

i.e. the sample mean and the sample variance are consistent estimators 100.



Point estimates

Efficiency — there are several definitions; we shall require the estimator £, to be a

“minimum variance unbiased estimator”, i.e. we require that the variance Var(f,)
of the estimator £, is minimal among all estimators. In other words,
if f,(x1,..,%,) is an estimator of the quantity 9, then

Var(g,) = Var(f,)  for any other estimator g,(xy,...x,)
of the quantity 9

It holds that the sample mean and the sample variance are efficient estimators.



An illustrative example

The goal is to estimate the average u and the variance ¢# of the value
of a purchase (shopping) in a supermarket.
* The population —i.e. the collection of the data units — consists of
all the customers of the supermarket in the given year.
« The data item is the value of a purchase {shopping) in the supermarket.
* Wae select a random sample of 64 customers. Collecting their data,
we calculate the estimates as follows:
+ Sample mean: X = 450 units of money
« Sample variance: 52 = 16384






Interval estimates

Having got the point estimates ¥ =~ 4 and s? = ¢%, we now wish to find

confidence intervals, i.e. intervals
[.’A_".'— Af, X+ Af] and [52 — 4.2, s% + ﬂsz]

such that
the probability that

pE[X—As, X+Az] and o? €[s? — Az, 5% +A,2]
is 2 95 %, say,
oris 2 1—a ingeneral,
where a =5% or a = 1% is the significance level.



Interval estimates

First, having the sample mean i, which is an estimate of the population mean g,

our goal is to find an interval
[ — Az, ¥ + Az]
such that
the probability that u € [Xx — Az, £ + Ag] is 2 95 %, say.

The interval is the confidence interval, and the probabilityis > 1 — a in general,
where a =5% (or a =1% or so) is the signlificance level.

Thus, given the «, our purpose is to find the A;.



An illustrative example

By the Lindeberg-Lévy Central Limit Theorem, we approximately have

_ a?
X“*N(ﬂ,?) ds n—oo

equivalently

7]
o/\n

~ N(0,1) as n—-o o

Thus, assuming that the number n = 64 of the customers is large enough, we

assume roughly that the sample mean ¥ follows the normal distribution already.



An illustrative example

Thus, assuming that the number n = 64 of the customers is large enough, we

assume roughly that the sample mean ¥ follows the normal distribution already

(j, =~ N(0,1)). We then have
X—u +8
Pl|-6 < S+6 = x)dx = P(5) —d(—6
( T ) | f@dx=0@) - o5
22
and we wish this probabilitytobe = 1 — a = 95 %, say, where f(x) = e 2

F
is the density of the normalized normal distribution.

Recall that ®(8) = 1 — ®(—§) because the normal distribution is symmetric.



An illustrative example

We equivalently have

x—

U
o/\n

P (—6 < < +6) = P(=d0/yn <X —u < +da/n) =

=P(x—dc/n<u<x+dc/n)=
=®(6)—P(—6)=D(6)—1+ D) =

=20(6)—1
where § > 0 is such that
20()—1=1—a

=—1_E)
5¢-(12



An illustrative example

Thus, knowing that

P(x—dbo/\nsu<x+06c/\n)=95%

with ¥ = 450 units of money and é = 1.959963... and n = 64 customers,
we conclude

o ]
the unknown p € ’450 ~ 0244995’ 0% 0.244995]

with the prescribed probability of about 95 %.

All right, the problem is that we do not know the standard deviation o.
We therefore use the sample standard deviation s and another theorem.



Theorem

If X,,X,,..,X,, are independent and normally distributed random variables with
X; ~N(,o2) for i=1,..,n, then

X—u
a/\n

~N(0,1)

where
Di=1 Xi/n

X is the sample mean X

Q
Il

3)
[ %)

o is the standard deviation

N(0,1) isthe standard normal distribution



Theorem

If X,,X,,..,X,, are independent and normally distributed random variables with
X; ~N(,o2) for i=1,..,n, then

(n—1)s?
e

2
~ Xn—1

where
52 is the sample variance st=3Yr. X, -X)*/(n—1)

t2_, is Pearson’s y2-distribution with n — 1 degrees of freedom



Theorem — Corollary

If X,,X,,..,X,, are independent and normally distributed random variables with
X; ~N(,o2) for i=1,..,n, then

X—p
s/ ~ th—1
where
X s the sample mean X=XL1X/n
3 s the sample standard deviation s = JZ}Ll(Xi - X»/(n—1)
t,—q1 s Student’s distribution with n — 1 degrees of freedom



Theorem — Corollary — Proof:

If X, X5,..,X,;, are independent and normally distributed random variables with
X; ~NQ,o2) for i=1,..,n, then

_ _ X—p
X—u_X—,u E_X,u\/ 1cr/s_ c/\n _—
sINE . alNm o/yn " Vn- T (n— 1)s2 -
)
g
N n-1
by the definition of Student’s &distribution
Z
—~1tp-y if Z~N(0,1) and X2, ~x24
Xn—l



An illustrative example

Thus, assuming that the purchase values x,,x»,...,x,, are approximately normal,

where n = 64 is the number of the customers, we obtain that

-"\_':_F +d
P (—5 < < +5) = f(x)dx = F(6) — F(-§8)
-5

s/vn

where f(x) is the density of Student's {-distribution with n — 1 degrees of
freedomand F{x) = ffw f(t) dt is the respective cumulative distribution function.

As above, we wish this probability to be 2 95 %, say.



An illustrative example

Analogously as above, we have

x‘—

i
s/n

P (—6 < < +6‘) =P(=8s/\n<EX—-u<+8s/yn) =

=P(x—-8s/yn<su<ix+8s/n)=
=F(8)—F(-8)=F()—-1+F(5) =
=2F(§)—1

where F(x) is the cumulative distribution function of Student’s t-distribution with

n—1 degrees of freedom, and 4 > 0 is such that
2F(6)—1=1—-=«a



An illustrative example

So we have

P(x—=06s/\n<su<x+d8s/yn)=2F(8)—-1=
=1l—«a

and we find é > 0 so that
2F(8)—1=1—«a

= F—1 —E)
§=F (1 .

If « =059%, say, by using statistical tables or Excel, we find § = 1.99834054 ...

Finally, recall that the sample average value of a purchase (shopping) is ¥ = 450,
the sample standard deviation is s = 128, and the number of the customers is

n = 64,



An illustrative example

Woe conclude that the probability that

the unkno e laso 1.99834054 x 128 450 + 1.99834054 % 128]
un W11 — ,
# \64 N7

or (approx.)
the unknown u € [450 — 31.973, 450 + 31.973]

isabout 1-a = 95 %.

iii Notice we did several approximations in the chain of our considerations 11
iii Notice also that the quantities ¥ and s are random variables 1!



The sample size for the confidence interval

Wae have the confidence interval:

~1f1_¢& —1{q _ &\,
e f_F (1 5)s f+F (1 2)s
v oo Vn
with the probability of (1 — a).
The absolute error of the estimate is
-1 _ E
A F (1 5)s
Jn

where s is the sample variance and F is the cumulative distribution function

of Student’s i-distribution with n — 1 degrees of freedom.



The sample size for the confidence interval

Wae have the confidence interval:

a — _ay .
2)S . F 1(\1{5 7)s

F—l (1 —_
HE|X— N
with the probability of (1 — a).

The relative error of the estimate is
-1 _ E
5 E _ F (1 2) S

7 Tn

where s is the sample variance and F is the cumulative distribution function

of Student’s i-distribution with n — 1 degrees of freedom.



The sample size for the confidence interval

Having the relative error
1fq4 &
_ A _ F (1 2) S

X X\n

where s is the sample variance and F is the cumulative distribution function

4]

of Student’s i-distributionwith n — 1 degrees of freedom,

— find the sample size n so that the relative error

6 < some prescribed value
0 < 3%, say



The sample size for the confidence interval

Having the relative error
14 @
F (1 2)5

-7

and assuming that s = const., i.e. the sample variance s does not depend on n

o =

| >

much, we obtain
2

-1 _ E
F (1 /) s)
X0
where & is the upper bound of the relative error (& = 3 %, say)and F is the

the new sample size n = (

cumulative disfribution function of Student’s -distribution with n — 1 degrees of
freedom.






Interval estimate for the variance

Now, our purpose is fo find an interval estimate for the population variance o2.

Given the significance level a, suchas a=5% or a =1 %, our purpose is

to find an interval
[s2 — Agz, 5% + Ag2]
such that
the probability that o2 € [s2 — Az, s% + Az] is 2 95 %, say.

Given the a, our purpose is to find the A.-.

We use the next theorem.



Theorem

If X,,X,,..,X,, are independent and normally distributed random variables with
X; ~N(,o2) for i=1,..,n, then

(n—1)s?
e

2
~ Xn—1

where

g? isthe (unknown) population variance
s2 is the sample variance (s* =3 ,(X; — X)?/(n— 1))
x2_, is Pearson’s chi-squared distribution with n — 1 degrees of freedom



An illustrative example

Thus, assuming that the purchase values x,,x»,...,x,, are approximately normal,

where n = 64 is the number of the customers, we obtain forany » > a > 0 that

a2

_ 2 b
P (a P kLl b) = f £ dx = F(b) - F(a)

where f(x) is the density of the chi-squared distribution with n — 1 degrees of
freedomand F(x) = ffw f(t) dt is the respective cumulative distribution function.

As above, we wish this probability to be 2 95 %, say.



An illustrative example

Let 0 < a < b. Then, likewise as above, we have

P <(ﬂ—1)32<b =p l( 0-2 <1 —_
a4 2 ~ ) "\b"m-Ds? "a

B P((n— 1)s2 < o? < (n — 1)32)

- b =0 a

= F(b) — F(a)

where F(x) is the cumulative distribution function of the chi-squared distribution

with n— 1 degrees of freedom.



An illustrative example

Having
— 1)¢2 — 1}e2
p ((n 1)s o2 < (n—1)s
b a

) = F(b) — F(a)

we wish this probability to be = 95 %, say, or = 1 — a in general,
where F(x) is the cumulative distribution function of the chi-squared
distribution with n — 1 degrees of freedom.

We then have to find the numbers b > a > 0 so that
Fh)—Fla)=1—-a«a



An illustrative example

Another natural condition is that the variance ¢? should be in the centre
of the interval [(n—1)s2/b, (n—1)s%/a], i.e.

1{(n—1)s?2 (n—1)s?
E( b + a )=62

and
F(b))—F(la)=1—-«

which is a system of two equations with two unknowns b > a > 0.

We, however, cannot solve the system because we do not know the variance ¢2.



An illustrative example

Therefore, having

P ((n —bl)s2 <ol < (n —al)sz) — F(B)— F(a)

we only find the numbers b > a > 0 so that

a a

F(b)=1- > and F(a) = >

(Then &2 may not be in the centre of the interval.)

For a =5 %, say, and n = 64, by using statistical tables or Excel, we find
b = 86.82959... and a = 42.95027 ...



An illustrative example

Finally, recall that the sample variance of a purchase (shopping) is s% = 16384
and the number of the customers is n = 64.

We thus conclude that the probability that
(64—1)x 16384 (64—1)%x 16384
86.82959 ' 42.95027

the unknown ¢% € [
or (approx.)
the unknown o2 € [11887.56, 24032.26]
isabout 1—a = 95 %.

iii Notice we did several approximations in the chain of our considerations !!!
iij Notice also that the quantity s? is a random variable !!!
¢,4.¢ Therefore, what does the 95 % probability mean 7?7



The variance of the
sample variance

* The variance of the sample variance

for normal distribution




The variance of the sample variance - a%

Finally, we show the calculation of the variance Var(s?) of the sample variance.

Recall the |last theorem:

- 2
If Xy, Xy, .., Xy ~ N(t,02) are independent, then & df's ~ ¥ 4

Recall also that
if X ~ ¥z, then Var(X) = 2k

Put together, we obtain:

o2

Var ((n — 1)32) =2(n—1)



The variance of the sample variance - 53%

Having
— 2 — 13)2
Var ((n J:' )s ) = (1262)12) Var(s?) =2(n—1)

we obiain
2(0.2)2

Var(s?) = —




