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« Parametric and Non-parametric tests

About statistical
hypothesis testing




Parametric and Non-parametric tests %&%

There are two large classes of statistical tests: parametric and non-parametric.

* The parametric tests make assumptions about the probability distributions
of the random variables that are subject to the test. It is often assumed that

the underlying distribution is normal (Gaussian).

 The non-parametric tests do not make such assumptions. The non-parametric

tests can be used if the random variables are not normally distributed.



Sign test
for the median

* Sign test for the median
 Paired sign test for

the difference of the medians




Sign test for the median

Motivation:
Let X be a random variable (of any distribution), but assume that

its cumulative distribution function F is continuous.
Recall that the median ¥ of the random variable X is the value such that

P(X<5c")=%=P(:“E<X)

We conjecture / we assume / we speculate / we ... / that the mean ¥ of the
random variable X is equal to some given value X, € R.

We thus formulate the null hypothesis: H,: X=%,



Sign test for the median

The sign test proceeds as follows:
» Letus have n observations xi,x5,..,x, ofthe random variable X,

whose cumulative distribution function F is continuous.
« Considering the null hypothesis (H,: ¥ = %,) about the median,
calculate the n differences
X1 —Xo, Xo—Xqg, .., Xpn—Xg
* Drop any zero differences (i.e., if x; — X%, = 0, then drop x; from the sample).
 We have a sample of m non-zero differences

Xj

=%y X, —Xg, ., X, — %



Sign test for the median

o Lot

Z=|{i:x,-% <0}|

be the number of the negative differences.

Theorem:

Under the null hypothesis (H,: ¥ = ¥;) that the median ¥ of the random variable
X is%

Z ~ Bi(m, 1)

i.e. the random variable Z follows the binomial probability distribution.



Sign test for the median

Remark: We actually test the hypothesis that the probability
1

(We have P(X < Xo) = P(X < %;) because we assume that the cumulative

distribution function F is continuous af %,.)

Therefore, we could test in the same manner the null hypothesis that
%o isthefirstquartile (P(X < Xy) =P(X < X%,) = i, whence Z ~ Bi (m, %)), or that

%o isthe third decile (P(X < X%3) =P(X < %3) = %, whence Z ~ Bi (m, %)) etc.



Sign test for the median

Having stated the null hypothesis about the median

Hy: X=X, or Hy PX<X)=pp= %
we also state the alternative hypothesis:
« two-sided: H: X+#ZX, or Hi: P(X <X #po
» one-sided: H: X>%  or Hi: PX<%))<po
* one-sided: Hi: <X, or Hi: PX<Z;)>p

The test then proceeds as the binomial test (or z-test approximately) for the



Sign (binomial) test for the median 5&%

Consider the first case (H;: ¥ + %,) first. We have: Hy: PX<X%3)=po=1/2
Hl: P(X <fﬂ) + Po

« choose the level of significance, a small number a« >0, suchas a =5%
« find the critical values K,L € {0,1,...,m} so that
K is the largest number and L is the least number such that

D i N TR Y (4T D Y (g

» if Z€{0,..,K}U{L,..,n}, the critical region, then reject the nuII hypothems
« if Ze{K +1,...,L — 1}, then do not reject (or fail to reject) the null hypothesis



Sign (binomial) test for the median 5&%

Consider now the second case (Hy: ¥ > %y). Wehave: Hy: PX < %)) =pp=1/2
H-]_: P(X <fﬂ) < Po

» choose the level of significance, a small number « > 0, suchas a=5%

« find the critical value K € {0,1,..., m} sothat K is the largest number such that

S (a3 (ks

» if Z€{0,..,K}, the critlcal reglon, then relect the null hypothesis
« if Ze{K+1,..,m}, then do nhot reject (or fail to reject) the null hypothesis



Sign (binomial) test for the median 5&%

Consider finally the third case (H;: ¥ < %y). Wehave: Hy PX < %) =p,=1/2
H-]_: P(X <fﬂ) > Do

choose the level of significance, a small number a« >0, suchas a=5%

find the critical value L € {0, 1, ...,m} so that L is the least number such that

S M- 3 ()

e if Z€{l,..,m}, the crifical region, then reject the null hypothesis

if Z €{0,..,L—1}, then do not reject (or fail to reject) the null hypothesis



Sign (z-) test for the median

It is inconvenient to calculate the sums XX_,(7) zim and ¥, (%) zim

if m is large. It is more convenient then to approximate the sums by using
the de Moivre-Laplace Central Limit Theorem (for p = ¢ = 1/2):

It holds, whenever —o < g < b < 400, that

k—Am(m) gm _ It

Jm

—rf —e Zdt as m — oo

p——_

¢(b)-¢(a)

where A, =[(m+aym)/2] =0 and B, =|(m+ bym)/2| < m if m = max(a? b?).
Moreover, the convergence is uniform with respect to a and 5.



Sign (z-) test for the median

De Moivre-Laplace Cenftral Limit Theorem (reformulated):
If X ~Bi(m,1/2), whenever —oco < a < b < +0o0, itthen holds

2X—m
P(a< ) f—e 2 dt as m-— ow

T opo@

and the convergence is uniform with respect to ¢ and b.



Sign (z-) test for the median 5&%

Consider the first case (H;: ¥ # X,) first. We have: Hy: PX<X)=py=1/2
H'l: P(X "-':fu) * Yo

» choose the level of significance, a small number a > 0, suchas a =5%
 find ¢ > 0 sothat

¢ 1 _& a oo t> a
—e 2dt == and —— e 2dft =—
f—m Vvarm 2 +C 2T 2

e if Z<(m—cym)/2 or (m+ cym)/2 < Z, the critical region, then reject
the null hypothesis

o if (Im—ecym)/2 <Z < (m+cym)/2, then do not reject (or fail to reject)
the null hypothesis



Sign (z-) test for the median 5&%

Consider now the second case (Hy: ¥ > %,). Wehave: Hy: P(X < %)) =p,=1/2
Hl: P(X <fﬂ) < Po

choose the level of significance, a small number a« > 0, suchas a=5%
find ¢ > 0 sothat

! 1 t?..
f —e 2dt=«

—0 V2T
e if Z < (m—cym)/2, the critlcal reglon, then relect the null hypothesis

e if (m—cym)/2 < Z, then do not reject (or fail to reject) the null hypothesis



Sign (z-) test for the median 5&%

Consider finally the third case (H;: ¥ < %;). Wehave: Hy: P(X<Z%py)=po=1/2
H'l: P(X "-':fu) > Yo

choose the level of significance, a small number « > 0, suchas a =5%
find ¢ > 0 so that

+ 00 1 _f
—e 2dt=«a

+c Vom
e if (m+cym)/2 < Z, the critical region, then reject the null hypothesis

v if Z < (m+cym)/2, then do not reject (or fail to reject) the null hypothesis



Sign test for the median

Remarks:
« By using another probability (such as p, = 0.25, pq = 0.3, etc.) we can test

the null hypothesis that X, is, e.g., the first quartile, the third decile, etc.

* [If we know that the distribution of X is symmetric (F(x) = 1 — F(—x)), then the
mean px = E[X] and the median % of the random variable X coincide (% = y).
Then the sign test for the median can also be used as another test for the mean

(Ho: 1t =X%).



Sign test for the median

Remarks:
* More generally, if we know that the mean u = E[X] is the py-quantile

(0 < pg < 1) of the distribution of the random variable X with a continuous
cumulative distribution function, then the sign test can also be used as another test

for the mean (Hy: p =%, with Z = |[{i: x5, < % }| ~ Bi(m, po)).

» Exercise: Apply the procedure of the sign test to determine the confidence
Interval for the median, i.e. the interval of values %, such that the null hypothesis
is not rejected for them.



Paired sign test for the difference of the medians

Motivation:
Let us have a sample of n objects, 8.g. n patients.

We do two measurements with each of the objects (patients)
— before some freatment
— after the treatment
The purpose if to learn whether the treatment has any effect.
(Hence the null hypothesis: "The treatment has no effect.”)
Let x., x5, ..., X, De the values measured before the tfreatment, and

let vy, 95, ..,V De the values measured afier the freatment.



Paired sign test for the difference of the medians

That is, the measurement x; and y; is done with the i-th object {(patient)

before and after the treatment for i = 1,2, ...,n.

FIRST, assume that only two outcomes are possible:

* x;<y; {improvement)

e x;>y;  (worsening)

Objects with x; = y; are dropped from the sample.

We then can fest the null hypothesis that the freatment has no effect, i.e.
Z =|{i:x; <y}l ~Bi(m, 3)

etc. (Finish the details of the test analogously as above as an exercise.)



Paired sign test for the difference of the medians

That is, the measurement x; and y; is done with the i-th object (patient)
before and after the treatmentfor i = 1,2,...,n.

SECOND, assume that x{,x5,..,x, and vy, v,, .., ¥, are the numerical outcomes
of the random variable X and Y, respectively, with a continuous cumulative

distribution function F; and Fy, respectively.

Theorem: The median X, of the difference X —Y of the random variables is

Fop=%—F



Paired sign test for the difference of the medians

Thus, we can test the null hypothesis that the median ¥ of the random variable X

(before the treatment) is the same as the median ¥ of the random variable Y
(after the treatment), i.e. their differenceis ¥; =% — % = 0.

(More generally, we can test that the difference ¥ — ¥ is equal to some prescribed
value %, € R.)

(Complete the details of the test analogously as above as an exercise.)



« Pearson’s x?-test for the goodness of fit

x2-test
for goodness of fit




Pearson’s y?-test for the goodness of fit

Let X be a random variable (discrete or continuous) and
let F be the cumulative distribution function of the random variable X.

We do not know the cumulative distribution function F.

We have the numerical results x; = X(w¢), x> = X(w3), ..., xy = X(wy)
of N trials of the comresponding random experiment.

Let F; be some cumulative distribution function. We conjecture / we assume /
we speculate / we ... / that F = F,, i.e. the random variable X follows the

probability distribution with the cumulative distribution function F = F,.



Pearson’s y?-test for the goodness of fit

More generally, let F, be a class of cumulative distribution functions (c.d.f.’s)

of a certain type, such as

* the collection of all ¢.d.f.’s of U(a,b) forvarious a,bER, a<b

* the collection of all c.d.f.'s of M(u,02) forvarious u € R and ¢% € R}
« the collection of all ¢c.d.f."s of Exp(A1) for various A € R*

* etc.

Having the numerical results x; = X(w4), x3 = X(w3), ..., xy = X(wy)

of N trials of a random experiment, we conjecture / we assume / we speculate /
we ... /that F € F,, i.e.the random variable X follows the probability distribution



Pearson’s y?-test for the goodness of fit

Having the numerical results x; = X(w¢), x; = X(w3), ..., x5 = X(wy)

of the N trials of the random experiment and having the class F, of the
cumulative distribution functions — first of all — find the cumulative distribution
function F, € F, that best fits the experimental data:

« if Fy ={F,}, then the c.df. F, is given; the number of parametersis v =0
« if F, isthe collectionof all c.df.'s of N(u a%), then put
p=% and o¢%=s?

(the sample mean and the sample variance); the number of parametersis v =2



Pearson’s y?-test for the goodness of fit

o if Fp isthe collection of all c.d.f.’s of Exp(1), then put

1 ’1
either A =-— or A= -
x S

the number of parameters is v=1
(recall: if X ~ Exp(2), then E[X] =1/A and Var(X) = 1/1%)
» If F, isthe collection of all c.d.f’s of U(a,b), then consider the German

Tank Problem (see previous lectures); the number of parameters is v =2

* efc.



Pearson’s y?-test for the goodness of fit

Having the sample data x4, x5, ..., xy 0f the random variable X and

the cumulative distribution function F, € F, that best fits the sample.

Now — as the second step — choose n intervals

(to, ti]l (tll t2]: (tZ! tB]! anay (tn—m t'n—i]l (tn—ll tn]
with
<t < <lz< <ty 2 <ty 1<,
as well as
to < min{xy, ..., X5} and max{xy,.., Xy} < t,
so that

— there are at least 5 outcomes in each of the intervals




Pearson’s y?-test for the goodness of fit

Formulate the null hypothesis: The random variable X follows the probability

distribution with the cumulative distribution function F = F,:
HU: F —_ F[}

Next — as the third step — assume the null hypothesis H; and calculate the
theoretical probability that t;_, <X < ¢;, i.e.
p=P1<X=st)=

= Fo(t;) — Fo(t;—1) for i

1,2,..,n



Pearson’s y?-test for the goodness of fit

Since p; is the expected probability (under the null hypothesis H,) that

X € (t;_41,t;]] and we have a sample x4,%5,.., Xy Of N observations,
we should find about
Eg =NX Py

observations in the interval (t;—4,¢;] for i = 1,2,..,n.
Let
0= |{j:x€@-tl}
be the true number of the observations found in the interval (¢t;_,, £;]
fori=1,2..,n.



Pearson’s y?-test for the goodness of fit

Theorem: If the null hypothesis H,: F = F, is true, then the statistic

n
X? = Z ©: ;,iEi)z ~ x%_. .. approximately as N -
where =
 n isthe number of the intervals (t;_4, ;]
v isthe number of the parameters that have been determined when
finding the cumulative distribution function 7, (v =0,1,2,...)
* 0; isthe number of the results found (observed) in the i-th interval (£;_4, ;]

« E; isthe number of the results expected (if H, is true) in the interval (t;_4, t;]



Pearson’s y?-test for the goodness of fit

Now, finish Pearson’s y?-test for the goodness of fit (H,: F = F;) as follows:

choose the level of significance, a small number a > 0, suchas a =5 %,
other popular valuesare a=10% or a=1% or a = 0.1 % efc.
find the critical value ¢ > 0 so that

+o0
fdx=a

c

where f is the density of the y2-distribution with n — v — 1 degrees of freedom
if X% > c, the critical region, then reject the null hypothesis
if X% < ¢, then do not reject (or fail to reject) the null hypothesis



Example: Tests for population proportion

Tossing a coin repeatedly, we ask whether the coin is fair.

More generally, we consider a Bernoulli frial, with the probability of the success
being p € (0,1), and with the probability of the failure being ¢ =1 — p.
We do not know the true probability p.

Wae conjecture / We assume / We ... / that the probability p = p,, i.e.
the (unknown) probability p is equal to some prescribed value p, € (0, 1),

e.d., in the case of the coin, conjecture that p, = 50 % (meaning the coin is fair).



Example: Tests for population proportion

Wae now know three statistical tests to test the null hypothesis that p = py:

« the binomial fest for the population proportion
« the ztest for the population proportion
* Pearson’s y2-test for the goodness of fit

The binomial test is exact and the z-test is an approximation of it.
Both binomial test and z-test allow one-sided or two-sided alternative hypothesis.

Pearson’s x*-test for the goodness of fit allows two-sided altemative hypothesis
(Hy: F # Fy) only,



Example: Tests for population proportion

Pearson’s y2-test for the goodness of fit proceeds as follows:

 there are two intervals (1 = “success” and 0 = “failure”)

 having N observations of the random variable X, we expect (under the null
hypothesis that p = p,) that E; =NXp, and E; =N X (1 —py)

* let O, and O, be the observed number of successes and failures, respectively

* the statistic

(0, - E,)* + (0 —Eo)*

X2 =
E, Eq A1

approximately as N - o

(we have n=2 and v =0, therefore n—v—-1=1)



Pearson’s y?-test for the goodness of fit

Remark: In Pearson’s y2test for the goodness of fit, we have

2 2
X ~ ¥p—v—1

where
 n isthe number of the intervals (t;_,, ;]

v isthe number of the parameters that have been determined when
finding the cumulative distribution function £, (v =0,1,2,...)

Notice that one degree of freedom (“-17) must always be subtracted
because the observed counts 0,,0,,..,0, are bound by the equation
0,+0,++0,=N

therefore only n — 1 of the counts (such as 04, 05, ..., On—1, Say) are free,



x2-test
of independence
of qualitative

data items

« x*-test of independence of

qualitative data items




x2-test of independence of qualitative data items

Consider a dataset where each data unit has two qualitative data items

(i.e. two qualitative variables).
Let the qualitative variables under the consideration be denoted by A and B.
Let the variable A can attain up to r ("rows”) distinct categories

A, Ay ..., A
Let the variable B can attain up to s ("columns”) distinct categories
B, B, .., B,

The counts of the occurrences of all the r X s combinations of the categories

are easily summarized by a contingency table.



Contingency table

the observed counts of the combinations
of the categories A,&Bj fori=1,...,r&j=1,...,s

marginal totals

: N1 N2 - Mg
- n21 Uy, - Nog
‘ Ny Ny2 Nys

marginal totals

the grand total




2 2 contingency table

The 2 2 contingency table is popular.
It is a contingency table with =2 rows and s=2 columns.

the observed counts of the combinations
of the categories A&B, for i=1,2 & j=1,2

marginal totals

marginal totals

the grand total




x3-test of independence of qualitative data items

Having all the observed counts of the combinations of the categories A; & B,
summarized in the contingency table for /=1,...,r and for j=1,...,s,

we ask whether the category of the data item (variable) B depends upon

the category of the data item (variable) A, or whether the categories of both data

items (variables) A and B are independent of each other.

Assume therefore the null hypothesis H,:

the categories of both data items (variables) A and B are independent

of each other



x3-test of independence of qualitative data items

Having all the observed counts of the combinations of the categories A; & B,
summarized in the contingency table for i=1,...,r and for j=1,...,s, assume

the null hypothesis H, that the categories of both data items (variables) A and B

are independent of each other.

Now — if we choose a data unit randomly:

« What is the probability that the data item A of the chosen data unit is of
category A; for some i=1,...,r?

« What is the probability that the data item B of the chosen data unit is of

category B, for some j=1,...,5 7



x3-test of independence of qualitative data items

The total number of all data units is n.

The count of the data units of category A, is n;.

Therefore, the probability that a randomly selected data unit is of category A, is
n;.

P =—

The count of the data units of category B; is n.;
Thereifore, the probability that a randomly selecied data unit is of category B; Is

n.g
Pj="



x3-test of independence of qualitative data items

Recall that the probability that a randomly selected data unit is of category
A; and B; is

n;.
Pi- = n

respectively. If the null hypothesis H, (that the categories of A and B

are independent of each other) is true, then the {cumulative) probability

n.j
and D= ?

that a randomly selected data unit is of category A; and B; should be

ni. Xn.;
n2

Pij =Pi. XP.j=

for i=1,2,..,r andfor j=1,2,..,s.



x3-test of independence of qualitative data items

Once the probability that a randomly selected data unit is of category A, and B, is

Ri. XN,
Pij =Pi. XPj= 2
then we should expect
ng. XN,
EU = Pij Xn= "

data units of category A; and B; for i = 1,2,..,r andfor j =1,2,..,s
if the null hypothesis H, (that the categories of A and B are independent
of each other) is true.



x3-test of independence of qualitative data items

Expecting

ni Xn.;
n

Eij=piXn=
and observing
0;‘ j = n; j
data units of category A; and B; for i =1,2,..,r andfor j=1,2,..,s,
we apply Pearson’s x>test for the goodness of fit to see if the observed counts
agree with the expected counts, i.e. if the null hypothesis H, (that the categories

of A and B are independent of each other) is true.



x3-test of independence of qualitative data items

Calculate

5

=iZ(OU U) 1ii(n><ni}-—ni.xn.j)z
- n n. Xn.j

i=1 j=1 i=1j=1

Theorem:
If the null hypothesis is true, then

X? ~ xto—1ys-1)  approximately as n-— o

Nofice the number of the degrees of freedom
(see below)



x3-test of independence of qualitative data items

The number of the degrees of freedom:

The observed counts 0;; for i =1,..,r andfor j=1,..,s

are bound by the system of r + s equations:
S S

Oij—ZnU—n; for i=1,2,..,r
=1 j_
r
ZOU—ZRU—RJ for j=1,2,...,3
i=1

of whichonly r+ s — 1 are linearly independent, i.e. one of the equations
depends on the others.



x3-test of independence of qualitative data items

The number of the degrees of freedom:

We thus have r X s observed counts 0;; for i =1,..,r andfor j=1,..,s

bound by r+ s — 1 linearly independent equations, i.e. only
rXs—r—s+1 = (r—-1)x(s—-1)

of the observed counts are free.

Therefore, the number of the degrees of freedom is

(r—1D(s—1)



x2-test of independence of qualitative data items

Now, finish the y*test of independence of qualitative data items

(H,. the categories of A and B are independent of each other) as follows:
« choose the level of significance, a small number a > 0, suchas a=5%

* find the critical value ¢ > 0 s0 that

+ 00

fx)dx=a

¢
where [ is the density of the y2-distribution with (r—1){(s—1) d.f.
« if X? = ¢, the critical region, then reject the null hypothesis
« if X? < ¢, then do not reject (or fail to reject) the null hypothesis




