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Abstract  
For more than 100 years economists have tried to describe economics in analogy to physics, more 

precisely to classical Newtonian mechanics. The development of the Neoclassical General 

Equilibrium Theory has to be understood as the result of these efforts. But there are many reasons 

why General Equilibrium Theory is inadequate: 1. No true dynamics. 2. The assumption of the 

existence of utility functions and the possibility to aggregate them to one “Master” utility function. 
3. The impossibility to describe situations as in “Prisoners Dilemma”, where individual 
optimization does not lead to a collective optimum. This paper aims at overcoming these problems. 

It illustrates how not only equilibria of economic systems, but also the general dynamics of these 

systems can be described in close analogy to classical mechanics. 

To this end, this paper makes the case for an approach based on the concept of constrained 

dynamics, analyzing the economy from the perspective of “economic forces” and “economic 
power” based on the concept of physical forces and the reciprocal value of mass. Realizing that 
accounting identities constitute constraints in the economy, the concept of constrained dynamics, 

which is part of the standard models of classical mechanics, can be applied to economics. Therefore 

it is reasonable to denote such models as Newtonian Constraint Dynamic Models (NCD-Models) 

Such a framework allows understanding both Keynesian and neoclassical models as special cases 

of NCD-Models in which the power relationships with respect to certain variables are one-sided. 

As mixed power relationships occur more frequently in reality than purely one-sided power 

constellations, NCD-models are better suited to describe the economy than standard Keynesian or 

Neoclassic models. 

A NCD-model can be understood as “Continuous Time”, “Stock Flow Consistent”, “Agent Based 
Model”, where the behavior of the agents is described with a general differential equation for every 

agent. In the special case where the differential equations can be described with utility functions, 

the behavior of every agent can be understood as an individual optimization strategy. He thus seeks 

to maximize his utility. However, while the core assumption of neoclassical models is that due to 

the “invisible hand” such egoistic individual behavior leads to an optimal result for all agents, reality 
is often defined by “Prisoners Dilemma” situations, in which individual optimization leads to the 

worst outcome for all. One advantage of NCD-models over standard models is that they are able 

to describe also such situations, where an individual optimization strategy does not lead to an 

optimum result for all agents. This will be illustrated in a simple example.  

In conclusion, the big merit and effort of Newton was, to formalize the right terms (physical force, 

inertial mass, change of velocity) and to set them into the right relation. Analogously the 

appropriate terms of economics are force, economic power and change of flow variables. NCD-

Models allow formalizing them and setting them into the right relation to each other. 
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1. Introduction 
 

For more than 100 years economists have tried to describe the economy in analogy to physics, 

more precisely to classical mechanics. The neoclassical General Equilibrium Theory has to be 

understood as the result of these efforts. But the orientation of economics towards physics has 

been implemented only partially, especially the dynamics of mechanical systems have been omitted 

completely. This paper therefore seeks to analyze economic models in perfect analogy to 

Newtonian mechanics, illustrating that not only equilibria but also the general dynamics of 

economic system with all their disequilibria can be described using the framework provided by 

classical mechanics.  

The formalization of the physical concepts of force and mass by Isaac Newton revolutionized 

physics and was the basis for the entire following development of the discipline. Similarly, this 

contribution aims at developing a formalization of the concepts of economic force and power in 

order to establish a single consistent structure for the description of economic systems.  

Chapter 2 provides a short overview over the historic attempts to find similarities between 

economics and physics.  

In chapter 3 we then set out to explain the principal ideas of this approach with easy examples.  

Chapter 4 describes the formal structure of such “Newtonian Constrained Dynamic Models” 
(NCD-Models), based on the concepts of economic force and economic power. The label 

“Newtonian” stems from the fact that the basic equations describe the change of flow variables 
just like in Newtonian mechanics. The label “constrained” refers to the fact that the economy is 
often subject to constraints. Accounting identities constitute the most important class of such 

constraints, which provoke constraining economic forces, in perfect analogy to classical mechanics. 

Similar to potential forces in physics, we look especially at those cases where economic forces can 

be expressed as gradients of a utility function. Economic models in which the equations can be 

expressed with a single master utility function are a special case. This is important with respect to 

the fact that neoclassic always assumes such a master utility function to exist and that economic 

systems are determined by its maximum. In no way is it however the case that the maximization of 

such a master utility function, if it exists, also leads to the optimal total utility for all agents.  

NCD-models of the economy have the same mathematical structure as the classical Newtonian 

mechanics with constraints. Both in physics and in the economy there are two types of variables. 

The stock variables  and the flow variables   

which are defined by the condition: 

 
 

¢x
i

t( ) = y
i

t( )  
In physics, stock variables refer to position and flow variables to velocity. In economics typical 

stock variables are capital, debt, etc. i.e. the quantities found in the balance sheet. Typical flow 

variables are consumption, investment, work, etc. i.e. those quantities which lead to a change in the 

balance sheet. In mathematical formal terms however also other variables such as prices can be 

regarded as flow-variables. 

      1 ,  , 
n

x t x t x t        1 ,  , 
n

y t y t y t 
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The Newtonian behavioral equations for a masse point with mass M can either be expressed as 

second degree differential equations of the position variables or as equivalently as first degree 

system of differential equations of the position and velocity variables. In the following we always 

chose the latter form of expression. The change of the velocity coordinates, i.e. the change of flow 

variables, is described by the physical forces . For reasons of simplicity we only investigate 

autonomous forces – forces, which are not explicitly dependent on velocity. 

    <1.1> 

The simplified form (for the full form see chapter 4) of the basic equations of NCD-models can 

be stated analogously to physics as the following: 

   <1.2> 

The functions  denote the economic forces. The parameters can be interpreted as economic 

power. Economic power therefore is formally equivalent to the reciprocal value of mass. In 

contrast to mass it is however fully dependent on the coordinates. This concept of economic power 

allows to interpret the common Keynesian and neoclassical algebraic models as economic NCD-

models with one-sided power structures, i.e. models in which certain power factors   

and/or . Standard equilibrium models can be understood as states of NCD-models in which 

it holds that the economic forces .  

The factors are often interpreted as the adjustment speed . This interpretation is only partly 

correct for two reasons: 

 A variable does not adjust on its own. It can only be adjusted by the actions of an agent. 

The factors are therefore rather characteristics of the agents than characteristics of the 

variables 

 Even clearer this can be shown by the general equations of NCD-models (see chapter 4). 

In the general form equation <1.2> reads: 

   

or in the case of there being an additional constraint 

   

if

( ) ( )

1
( ) . ( ( ), ( ))

i i

i i

x t y t

y t f x t y t
M

 

 

( ) ( )

( ) . ( ( ), ( ))

i i

i i i

x t y t

y t f x t y t
 
 

if i

i 

0k 

0if 

i iy

i

 ( ), ( )

i i

j j

i i i

j

x y

y f x t y t

 

 

 

 

( ), ( )

, 0

i i

j j

i i i

j i

x y

ZB
y f x t y t

y

ZB x y

 

 
  





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These equations do not allow an interpretation of the factors  as adjustment speeds. They can 

however be interpreted as the power of an agent  to change the variable by exercising the 

economic force . 

In practice there are two common differences between Newtonian models in physics and NCD-

models in economics: (1) the physical forces are often only dependent on the position coordinates 

(i.e. stock variables x) while economic forces are most commonly only dependent on flow variables 

y. (2) A common but not general difference is that in physics constraints are predominantly 

holonomic, while constraints in economics are nearly always non-holonomic. 

 

In chapter 5 we will discuss different closures of economic models and their implicit statement 

about economic power relationships. Especially we discuss the case that for certain power factors 

it holds that , which means that an agent   has no power to influence a flow variable , 

or that he does not wish to do so. This case corresponds to a closure by dropping some of the 

equations of an over-determined system of equations. We also show that the implementation of 

Lagrangian multipliers could be interpreted as a special closure of an over-determined equation 

system. 

 

In chapter 6 we demonstrate that standard economic models can be seen as special cases of NCD-

models, in particular as NCD-models with one-sided power relations, that means with power 

factors which are just zero or infinite. That means that in contrarst to standard economic models, 

NCD-Models allow also describing situations with mixed power relations. 

In chapter 7 we then illustrate the methodology with an NCD-model for the two institutional 

sectors households and businesses. 

An NCD-model describes the behavior of a system in which every agent follows an individual 

optimization strategy, in order to increase his individual utility. The assumption that this egoistic 

behavior leads to an overall optimal result for all agents via the ‘invisible hand’ is at the core of 
standard economic theory. In many real situations this assumption is however incorrect, as reality 

is often determined by prisoners dilemma situations in which individual optimization leads to the 

worst outcome for all agents. In chapter 8 we will present a NCD-model for a continuous state, 

continuous-time prisoners dilemma, which can be reduced to the standard prisoners dilemma if 

described with discrete time and two states (cooperation, defection). This method to describe 

problems of game theory with continuous time and differential equations can be used also for more 

general problems in game theory. Because of the characterization with differential equations the 

continuous-time approach is usually easier to solve than the discrete time models.  

It needs to be stated that in general not only in the economy, but also in society as a whole, prisoners 

dilemma situations (and other game theoretical situations) are frequent. Government regulations 

and laws have to be understood as attempts to overcome the dilemma. Such laws can be modeled 

as constraints within economic NCD models, which create a situation in which individual 

j

i


j
iy

j

i
f

0j

i
  j

iy
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optimization might indeed lead to a general optimum. A more detailed discussion under which 

conditions this is possible is offered elsewhere. 1 

Chapter 9 concludes with an overview over the conceptual and methodological advantages of 

NCD-models for the understanding of the economy and the dynamics of general economic 

systems.  

 

                                                 
1 Glötzl, E. `The prisoners dilemma as NCD-model. The conditions under which individual 

optimization leads to a general optimum.´ 
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2. Literature Review   
 

2.1. Economics and Physics 
Since the beginnings of modern economics the endeavor to construct the discipline along the 

principles of physics has been omnipresent. Already Adam Smith showed his fascination of 

Newton in ‘History of Astronomy’ (A. Smith, 1795), a fascination that also reveals itself in the 

methodology of his economic theory as numerous studies show (for an overview over the literature 

see (Redman, 1993)). For instance Smith’s theory of value, developed in ’The Wealth of Nations’ 
(A. Smith, 1776), is to be regarded as the counterpart to the concept of energy in physics. In its 

essence the Smithian theory of value was adopted by all following classical economists. In this 

point of view value is conserved just like energy within the circular flow (Mirowski 1989).   

As a result of the impressive scientific advances in the field of physics and chemistry during the 

18th and 19th century, the social sciences increasingly tried to imitate the methodology of the 

natural sciences. Due to the complex and interdependent structure of social phenomena these 

attempts were of limited success. Only in the field of economics the orientation towards the 

methodology of physics seemed promising by focusing exclusively on competitive markets, prices 

and quantities and limiting investigation to rational human behavior (Rothschild, 2002). 

The decisive step in this development was brought by Léon Walras’ General Equilibrium Theory 
(Walras, 1874),, and the simultaneously published contributions by Stanley Jevons and the 

introduction of the ‘calculus of pleasure and pain’. This work marked the end of the era of classical 
economics and was the birth of neoclassical economics. The assumption that the behavior of all 

economic agents could be described by utility functions was at the core of this new school of 

thought. All economic questions involving psychological and social factors were deliberately 

ignored. Until today these central principles are the foundation of standard economics. The Arrow-

Debreu General Equilibrium Model, is seen as the first complete model describing a general 

equilibrium based on the Walrasian theory (Arrow & Debreu, 1954).  

The endeavor to identify further similarities between physics and economics, as well as the goal to 

still increase the orientation of the methodology of economics towards economics was continued 

by Paul Samuelson. It was his work which was decisive for mathematics to become the standard 

method in economics. Moreover, Samuelson identified several similarities between physics and 

economics, arguing that classical thermodynamics and neoclassical economics are related in their 

common search of a basis for the optimization of observed behavior. In physics this is achieved 

by maximizing free energy, in economics by maximizing utility (James B. Cooper, 2010; J. B. 

Cooper & Russell, 2011). In a similar vein Smith und Foley (2008) attempt to adopt the model 

structure of thermodynamics as well as the principle of entropy in economics and show under 

which circumstances and conditions this is possible (E. Smith & Foley, 2008). 

In contrast to that, other authors such as Kümmel (2011) have tried to investigate the consequences 

of the existence of the first and second law of thermodynamics within the economy, rather than 

trying to find suitable analogies for economics. 
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2.2. Economics and Power 
„Economics as a separate science is unrealistic and misleading 
if taken as a guide in practice. It is one element – a very 
important element, it is true -  in a wider study, the science of 
power.“  (Russell, 1938, p. 108) 

 
The goal to imitate physics led to the fact that questions of power were ignored for two distinct 

reasons. On the one hand there was the idea that while power relations might play a role in the 

short term, in the long run are irrelevant due to inevitable economic laws. This argument is most 

prominently made in ‘Macht oder ökonomisches Gesetz’ by Eugen von Bahm-Böwerk (Böhm-

Bawerk, 1914). To some extent the idea can also be found in later discussions, for example in the 

Lucas-critique. On the other hand as a result of the self-imposed restriction to follow a strictly 

mathematical methodology questions of power were left to the disciplines of psychology and the 

social sciences. 

Those economic theories which explicitly deal with questions of power, such as Marxian theory 

where class struggle and distribution put power relations center stage (Foley, 1986) or parts of 

institutional economics, have been marginalized and are a small minority in modern economics. In 

contrast, neoclassical orthodoxy limits itself to monopoly power of companies and negotiating 

power of workers on the labor market in its understanding of power, as the AS-AD model which 

can be found in every standard economics textbook (see for instance Blanchard & Illing, 2009). 

This view of power fully neglects the fact that in reality all agents have a more or less pronounced 

power to assert their interest, be it in the market process or by influencing the political and social 

framework. Finally, power can not only be a means to economic actions but an end in itself 

(Rothschild, 2002). 

 

2.3. Closure of economic models 
An important body of literature has dealt with the problem of closure of economic models. Closure 

is the task of making an under- or over-determined equation system, usually including 

macroeconomic accounting identities, solvable. Therefore, “[…] prescribing closures boils down 
to stating which variables are endogenous or exogenous[…]”(Taylor, 1991, p. 41), as some 

behavioral equations need to be omitted to yield a determined system. Already in 1956, Kaldor set 

out to investigate the model structures of different schools of economic thought and thereby 

implicitly also discussed diverse closures of Ricardian, Marxist, Keynesian and Neoclassical models 

(Kaldor, 1955). In a similar vein Sen (1963) further showed that in fact Neo-classical and Neo-

keynesian models of distribution can be derived from the same equation system and differ in their 

essence the choice of which equations are dropped i.e. in the assumptions about causality. Marglin 

(1987) on the other hand approaches the problem from the other direction and argues that Neo-

classical, Neo-keynesian and Neo-marxist models have a common underdetermined core 

equational system which is closed using different behavioral rules. More recently, BarBosa-Filho 

(2001, 2004) investigated three alternative closures of Keynesian models with investment, net 

exports or autonomous consumption as driving force of aggregate demand. 

 

 

2.4. The invisible hand does not always lead to the optimum  
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Adam Smith’s analysis of the economy and his theory that egoistic behavior of all agents will lead 
to the optimal result in the end, often summarized under the metaphor of the ‘invisible hand’, is a 
central thought in economics until today. This is the case even though many authors have shown 

that individual optimization does not necessarily lead to an overall optimum. For instance John 

Nash, the founder of game theory, showed that individually optimal behavior can lead to stable 

equilibria which constitute the worst scenario for all players (Nash, 1951). Throughout the second 

half of the 20th century there has been significant work, not least with experiments, trying to 

understand to what extent such prisoners dilemmas play a role in reality as Giza (2013) illustrates. 

This method to describe problems of game theory with continuous time and differential equations 

can be used also for more general problems in game theory (Cvitanic 20011).  Because of the 

characterization with differential equations the continuous-time approach is usually easier to solve 

than the discrete time models (Sannikov 2012). 
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3. The basic principles illustrated in easy examples  
 

In chapter 6 we will postulate the general case how common economic models can be described 

as special cases of NCD models. In order to illustrate the basic ideas several simple examples will 

be discussed in the following. 

 

3.1. Microeconomic example: Edgeworth-Box 
An Edgeworth-Box is a graphic tool in microeconomics designed to describe the equilibrium in a 

pure barter economy with only two agents A, B and two goods. Starting from an allocation of the 

goods between the agents, they reach a Pareto-optimum by trading along a contract curve. In this 

optimum the utility of no agent can be increased without simultaneously decreasing that of another 

agent. Equilibrium Theory makes no assertions about the contract curve, i.e. the way how the 

optimum is reached, nor which of the possible Pareto-equilibria is reached. 

The nature of an NCD model lies exactly in describing the dynamics of the contract curve. 

Modeling the contract curve also yields the position of the equilibrium. 

Evidently, it cannot be predicted in the individual case on which contract curve the agents reach a 

result which is beneficial for both (Pareto-optimum). It makes sense however, to understand the 

typical negotiation path as mean of the negotiation paths in similar situations and to model the 

typical negotiation path of two agents in terms of an NCD model in the following way: 

The negotiation strategy of both agents is based on optimizing their individual utility function. 

Each agent will therefore employ an ‘economic force’ in the direction which corresponds to the 
highest increase of his utility function. The more his gain in utility, the higher will be the force he 

employs. The direction and magnitude can be described exactly by the gradient of the utility 

function, which is perpendicular to the lines of constant utility. The extent to which an agent can 

achieve his goal does not only depend on the force he and the other agent employed, but also on 

their respective ‘economic power’. The actual change in the allocation of goods will therefore be 

directed towards the resulting force of the economic forces employed by the agents, weighted by 

their respective power factors. Evidently, the negotiation result also depends on the agents’ power 
factors. 
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Denoting:  

1 2 1 2, , ,A A B B
x x x x  the amounts of goods 1, 2 of the agents A, B 

1 2 1 2, , ,A A B B
x x x x     the change over time of goods 1, 2 of the agents A, B 

1 2 1 2( , ) and ( , )A A A B B B
U x x U x x  the utility functions of A, B 

,A B   the respective economic power factors of A, B 

1 2,m m  the total amounts of goods 1, 2 

 

then the above can be formalized in the following way: 

1 2 1 2 1 2 1 1 2 2
1

1 1 1 1

1 2 1 2 1 2 1 1 2 2
2

2 2 2 2

( , ) ( , ) ( , ) (( ),( ))

( , ) ( , ) ( , ) (( ),( ))

A A A B B B A A A B A A
A A B A B

A A A A

A A A B B B A A A B A A
A A B A B

A A A A

U x x U x x U x x U m x m x
x

x x x x

U x x U x x U x x U m x m x
x

x x x x

   

   

         
   

         
   

  

The equilibrium (Pareto-optimum) which is dependent on the respective economic power factors 

is then given as  

1 2 1 1 2 2

1 1

1 2 1 1 2 2

2 2

( , ) (( ),( ))
0

( , ) (( ),( ))
0

A A A B A A
A B

A A

A A A B A A
A B

A A

U x x U m x m x

x x

U x x U m x m x

x x

 

 

   
 

 

   
 

 
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3.2. Macroeconomic example: ‘Saving vs. Investment’ 
 

3.2.1. Problem 

 

Two aspects will be illustrated with this simple example: 

1. How can the analogy between economic models and physics be understood? 

The answer is that NCD models describe the dynamics of economics in analogy to 

movement under constraints in classical mechanics. 

2. Is saving the precondition for investment or is the opposite the case and saving follows 

from investment? Or put differently: What is the relationship between the neoclassical 

assumption that saving leads to investment to the Keynesian assumption that saving 

follows from investment? The answer is that in the end it depends on the distribution of 

power between savers and investors.   

 

3.2.2. Physics: Movement on an inclined plane: 

 

Denoting: 

1 2,x x  the spatial coordinates,  

1 2,v v  the velocity coordinates and   

1 2,v v  their derivatives with respect to time 

M   the inertial mass 

1 2,f f  the coordinates of the forces exerted on the mass M 

1 2 1 2( , ) 0ZB x x x x    the constraint describing the inclined plane with 45° 

  the Lagrange-multiplier 

 

The movement of the mass point on the inclined plane is the described by the following Newton-

Lagrange equations:  

 

1 1 1

1

2 2 2

2

1 2 1 2

1 1

1 1

( , ) 0

ZB
v f f

M x M

ZB
v f f

M x M

ZB x x x x

 

 

    

    


  

  <3.1> 
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The respective first terms 1 2

1 1
undf f

M M
describe the coordinates of the ‘ex ante’ force while the 

respective second terms
1 2

and
ZB ZB

x x
  
 

 describe the coordinates of the ‘constraint force’. The 

sum of both terms is denoted as ‘ex post’ force, as it describes the factual resulting movement 
under the constraint. 

  

3.2.3.  The NCD model and ‘Saving vs. Investment’ in analogy to physics 
 

Denoting:  

I  Investment and S  Saving and ,I S   their derivatives with respect to time 

IF  any investment function, e.g. 0 1:I IF i i Y     

SF  any saving function, e.g. 

or   ( constant, )

( saving rate of work income, hourly wage, work,

saving rate of profit , profit)

0 1 0 1

L L P L L

P

S = SF := s + s Y s ,s Y BIP

S = SF := s p L - s P s p L

s P

  

, the economic power of the savors and investors respectively
S I

   

( , ) 0ZB I S I S    the accounting identity of investment and saving as a constraint 

  Lagrange multiplier 

 



17 

 
Assuming that the investor will try to invest harder the more he is currently behind his 

investment plan (investment function) and vice versa, his behaviour  can be expressed formally 

defining the economic force If   he employs to change his investment in the following way: 

 ( )If IF I    

Defining in turn 

 ( )Sf SF S    

 

a NCD model can be set up easily in the following way: 

 

( ) ( )

( ) ( )

( , ) 0

I I I I

S S S S

ZB ZB
I f IF I IF I

I I

ZB ZB
S f SF S SF S

S S

ZB I S I S

     

     

         
 
         
 

  

 <3.2>  

It is visible immediately that the movement on an inclined plane and the development of saving 

and investment can be described by the analogous equations <3.1> and <3.2>. The only 

substantial difference lies in the fact that the mass M  is independent of the coordinates while the 

power factors ,I S   are dependent on them. It is also typical that forces in physics only depend 

on the spatial coordinates (here 1 2,x x  ), while in economics they often only depend on the flow 

variables (here ,I S  ). 

 

3.2.4. Necolassical and Keynsian conceptions of investment and as special cases of a 

NCD model with one-sided power relations 

 

Dividing equation (2) of the NCD model <3.2> 

 

(1) ( )

(2) ( )

(3) ( , ) 0

I

S

I IF I

S SF S

ZB I S I S

 

 

   

   
  

  

by S  and letting S   yields 

 

(1) ( )

(2)

(3) ( , ) 0

II IF I

S SF

ZB I S I S

    


  
  

Setting  0I   in (1) and taking the derivative of the constraint (3) equation (1) reads: 

 (1) I S    

This equation can however be derived from (3) by differentiation and can therefore be omitted. 

This can be interpreted as the change of I  only depending on the change of S  and the constraint. 
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The power relations S    and 0I   therefore describe the neoclassical assumption that 

investment is entirely determined by saving. Exercising the same transformations with the power 

factors I    0S 
 
yields the contrary Keynesian perspective that saving is determined 

entirely by the investment behavior. 

A major conclusion is that in reality power relations will neither correspond to the neoclassical 

nor the Keynsian perception. In reality mixed power relations are to be assumed. This in turn 

means that the reality can be described more adequately using NCD models.  

 

3.2.5. General equilibrium model under constraint as a stationary solution of a NCD 

model  

  

Starting point for the general equilibrium theory are utility functions. The utility functions 

corresponding to the economic force 1 2( , )f f f : 

 
( )

( )

I

S

f IF I

f SF S

 
 

  

are given as 

 

2

2

1
( )

2

1
( )

2

I

S

U IF I

U SF S

 

 
  

In this case the individual utility functions can be aggregated to one ‘master utility function’ MU   

 2 21 1
( ) ( )

2 2
MU IF I SF S      

so that the gradient of MU  yields the economic force: 

 f grad MU   

 In terms of coordinates this means: 

 

( )

( )

I

S

MU
f IF I

I

MU
f SF S

S


  




  


  

The model for general equilibrium theory is given by the maximization of the master utility function 

under the constraints ( , ) 0ZB I S I S    , i.e. by setting the gradient of MU  under 

consideration of the Lagrange multipliers zero. This yields the equation system: 



19 

 

 

0 ( )

0 ( )

( , ) 0

MU ZB
IF I

I I

MU ZB
SF S

S S

ZB I S I S

 

 

 
    

 
 

    
 

  

  <3.3> 

Starting on the other hand from NCD-Modell <3.2> 

it becomes obvious that the General Equilibrium model <3.3> corresponds to the stationary 

solutions of the NCD-model with power factors 1I  and 1S  . 

  
 

3.3. ‘Creditor vs. debtor’ as analogous model to ‘saving vs. investment’ 
 

In a closed economy the sum of all receivables R   is always equal to the sum of all debts D  , i.e. 

the accounting identity (constraint) R D  always holds. The development of these quantities 

with respect to time is on the one hand dependent on the sum of creditors’ and debtor’s 
respective interest and on the other hand on their power to assert their interest2. Therefore the 

‘Creditor vs. debtor’ model can be understood in full analogy to the ‘saving vs. investment’ 
model. 

                                                 
2 In Glötzl (1999) the ‘fundamental paradox of money economies’ is postulated, describing that 
in an economy in which credits are measured in monetary quantities, the power of the sum of 
creditors to increase their credit will always be greater than the power of the sum of debtors to 
decrease their debt. In other words there is an ‘powerlessness of the debtors’ and a „power of the 
creditors’. These power relations are the reason for debt traps and the constant growth of credit 
and debt.  
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3.4.  Subsistence economy 
 

3.4.1. Overview 

 

A particularly simple economic case for our model is a subsistence economy with only one agent. 

More precisely that means there is only one agent, who produces the consumption goods for his 

own consumption (and therefore produces no investment goods), who produces these goods with 

his own work and without capital and who consumes all produced goods immediately without 

storing anything. We first set up this model with the General Equilibrium and then with the 

Keynesian approach. The aim is not to ascertain which model is ‘correct’, but to demonstrate the 

mathematical structure of the model equations associated with these model types. Then we will 

describe this subsistence economy with two NCD models with different utility functions and show: 

1. the fundamental analogy of these NCD models to the movement of a masse point on an 

inclined plane 

 

2. that the General Equilibrium model can also be interpreted as a state of the first NCD 

model where all economic forces are equal to zero. 

 

3. That the Keynesian model can be interpreted as a special case of the second NCD model 

with one-sided power relations. 

 

3.4.2. The General Equilibrium model 

 

The first pillar for the neoclassical equilibrium model is the agent’s utility function , which is the 

sum of the utility functions for the consumption  and for the work . As for our 

purposes the form of the specific utility function is not relevant for reasons of simplicity we chose 

C

L

U

CU C LU L
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The second pillar is a Cobb-Douglas production function. As capital is not used as a factor of 

production it takes the form: 

  

The third pillar is the accounting identity for the use of :  

  

 

This gives a General Equilibrium model which consists of the maximization of under the 

constraint   . This yields the model equations: 

 

1
0 , 0

0 . 0

( , ) 0 . 0

U ZB
bzw

C C C

U ZB
bzw L

L L

ZB C L bzw C L

 

 

 
   

 
 

    
 

  

  <3.4> 

The immediate solution is given by: . 

The associated stock variable for consumption  of the flow variable  and the 

associated stock variable for work  of the flow variable are irrelevant in this model. 

Overall the model structure is therefore as described in <1.1>, when the constraints are taken into 

account additionally. 

 

3.4.3. The Keynesian Model 

The first pillar for the Keynesian model is a consumption function which we will assume to be of 

the following form for reasons of simplicity: 

   

The second pillar is again the accounting identity for the use of  : 

    

This yields the model equations: 

   <3.5> 

The result is given immediately by: 0

11

i
C

i



 

 

21
( , ) ( ) ( ) 2

2
C LU C L U C U L C L   

Y L

Y

Y C

U

( , ) 0ZB C L C L  

1C L 

:SC C dt  C

:SL L dt  L

0 1C i i Y 

Y

Y C

0 1C i i Y

Y C

 

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Again it holds that the associated stock variable for consumption  of the flow variable 

 and the associated stock variable for work  of the flow variable are irrelevant in 

this model. Overall the model structure is therefore also as lid out in <1.1>, when the constraints 

are taken into account additionally. 

3.4.4. The first NCD-Modell 

The first NCD model starts from the same utility function as the neoclassical model does: 

   

The more an agent’s utility increases through consumption and the bigger his economic power 

, the stronger is the economic force the agent employs to increase his consumption. Similarly, the 

agent will employ a greater economic force to reduce his work, the more his utility thereby increases 

and the bigger his economic power   is. This yields the two behavioral equations: 

   

These equations describe the dynamics without taking into account the constraint. This constraint 

is defined by the fact that the agent can only consume what he produced. The dynamics without 

the constraint will be called ‘ex ante’ dynamics in the following. Choosing the units adequately the 

constraint reads: 

   

Due to this constraint there are additional constraint forces, which are perpendicular to the 

constraint. This means that the constraint forces are a multiple (Lagrange multiplier) of the 

constraint’s gradient. The basic system of equations is then given as:  

   <3.6> 

This system of equations describes the true ‘ex post’ dynamics which result from the constraint. 
The structure is identical to <1.2> . The ‘ex post’ dynamics of the NCD model is therefore given 
by the interaction between the ‘ex ante’ forces and the constraint force (see figure 1). 

:SC C dt 
C :SL L dt  L

21
( , ) 2

2
U C L C L 

C

L

1
C C

L L

U
C

C C

U
L L

L

 

 

  

   


( , ) 0ZB C L C L  



1

( , ) 0

C C

L L

SC C

SL L

U ZB
C

C C C

U ZB
L L

L L

ZB C L C L

   

   

 
 

     
 
      
 
  
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3.4.5. The second NCD model 

The second NCD model starts from a utility function for the consumption: 

   

This utility function can be interpreted in the following way: the agent (for whatever reason) 

desires a consumption in the amount . His utility increases the closer his 

consumption approaches his desired consumption . The utility function for labor 

is assumed to be identical to the previous case. The agent’s utility function  therefore 

reads:  

   

and due to the accounting identities for the creation and use of   (choosing adequate units) 

it holds that: 

   <3.7> 

From   results that . When this is inserted into the other model equations can 

be omitted and which yields: 

CU

2

0 1

1
( , ) ( )

2
CU C Y i i Y C   

0 1( )i i Y

0 1( )i i Y
LU

L U

2 2

0 1

1 1
( , , ) ( , ) ( ) ( )

2 2
C LU C L Y U C Y U L i i Y C L      

Y

1

2

( , ) 0

( , ) 0

ZB L Y L Y

ZB C Y C Y

  
  

1ZB Y L 1ZB
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   <3.8> 

 

3.4.6. The analogy between NCD models and movement on an inclined plane 

Looking at the constrained movement of a mass point M on an inclined plane with an 

inclination of 45 degrees, which is subject to two forces  in the direction of the two 

coordinate axis (see figure 1), reveals a close analogy to the previously shown models of a 

subsistence economy. The model equations are: 

   <3.9> 

The general structure of NCD model equations of the two NCD models shown in <3.6> is 

nearly identical to those of movement on an inclined plane <3.9> . The only differences are: 

1. In classical mechanics the inertial mass is not dependent on the direction in which the mass 

point is accelerated. In contrast the economic power can assume different values for different 

variables. 

2. The economic forces in this example depend solely on flow variables, as is mostly the case 

in economics. In contrast the physical forces very often depend solely on stock variables 

(spatial coordinates), as is the case in this example. 

3. The constraints are non-holonomic in the subsistence economy model as is nearly always 

the case in economics. This means they also depend on flow variables. The constraints present 

in the movement on an inclined plane however only depend on stock variables (spatial 

coordinates). The constraints are therefore holonomic which is very often the case in 

mechanics. 

3.4.7. The General Equilibrium Model as a state without power of the first NCD model 

It is apparent that the general equilibrium model <3.4> identical with the results from the first 

NCD model <3.6> , in which ‘ex post’ forces disappear with  and .  

 

0 1( )

( , ) 0

C C

L L

SC C

SL L

U ZB
C i i L C

C C

U ZB
L L

L L

ZB C L C L

   

   

 
 

       
 
      
 
  

1 2,f f

1 1

2 2

1 1

2 2

1 2 1 2

1

1

( , ) 0

x y

x y

y f
M

y f
M

ZB x x x x





 
 

  

  

  

1C  1L 
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3.4.8. The Keynsian model as NCD model with one-sided power relations  

In the following we demonstrate that the Keynesian model <3.5> is identical with the second 

NCD model with the special power factors  and  . If in equation <3.8>  

 is chosen the system of equations reads: 

   

This system of differential and algebraic equations can be simplified by taking the derivative 

of the algebraic equation (5), which is the constraint.  

   

Equation 4 then reads . Inserting this then yields: 

   

Equation (4) can be omitted as it directly follows from equation (5). Dividing (3) by  and 

letting  the system of equations is: 

   

Due to <3.7> it holds that . Therefore the model equations are identical with those in 

<3.5> and therefore identical to the Keynesian model. 

  

C   0L 

0L 

0 1

(1)

(2)

(3) ( )

(4)

(5) ( , ) 0

C

SC C

SL L

C i i L C

L

ZB C L C L

 


 
 
    
  

  

0C L  

C  

0 1

(1)

(2)

1
(3) ( )

2

(4)

(5) ( , ) 0

C

SC C

SL L

C i i L C

L C

ZB C L C L



 
 

   

 
  

C

C 

0 1

(1)

(2)

(3)

(5) ( , ) 0

SC C

SL L

C i i L

ZB C L C L

 
 
 

  

L Y
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4. Model Equations of general Newtonian Constrained Dynamic Models 

(NCD models)  
 

4.1. The general structure of NCD models 
For any number of agents (independent from the fact whether these agents are individual economic 

agents of a representative agent for a certain group or sector) the general concept of NCD models 

can be described verbally in the following way: 

 Starting from an economic state at time t, which is described by n stocks 𝑥𝑖 and n flows 𝑦𝑖 
(𝑖 = 1,… , 𝑛) , every one of  m agents (𝑗 = 1,… ,𝑚) is interested in changing this state and 

has an economic  power 𝜇𝑖𝑗 to assert his interest. 

 Therefore, he employs an economic force 𝑓𝑖𝑗 to change the flows in the direction which is 

beneficial for him. The effective force is directly proportional to the economic force 𝑓𝑖𝑗 he 

employed and his economic power 𝜇𝑖𝑗 . The interaction between all forces and power factors 

determine the ‘ex ante’ dynamics.  

 𝑙 constraints 𝑍𝐵𝑘 (𝑘 = 1, . . , 𝑙), such as accounting identities evoke l additional constraint 

forces. The ‘ex post’ dynamics is determined by n interest-led forces (times the power 

factors 𝜇𝑖𝑗  ) plus 𝑙 constraint forces. The 𝑙 constraint forces are given analogously to 

classical mechanics as the l Lagrange multipliers 𝜆𝑘 times the gradient of  𝑍𝐵𝑘. 

 

As the models can be formulated substantially more easily using continuous time and differential 

equations rather than difference equations in addition to better revealing analogies to classical 

mechanics, this approach will be chosen. Generally an equivalent formulation in discrete time 

would however always be possible. Similarly, adding stochastic terms to the model would not pose 

any problem. For reasons of simplicity this will not be done in the following.  

The general structure of NCD models can be illustrated with the following equational model: 

(number of variables ( 1,..., )i n , number of agents ( 1,..., )j m , number of constraints 

( 1,..., )k l  

    <4.1> 

Put simply, NCD models can be regarded as SFC (Stock-Flow-Consistent) and potentially also AB 

(Agent-Based) models with continuous time and constraints. 

 

4.1.1. Comment 1:  

When it holds that for an and a certain  that , the differential equation reads 

1 1

( , )
( , )

( , ) 0

i i

m l
j k

i i k

j k i

k

j

i

x y

ZB x y
y

y
f x

B

y

Z x y

 
 

 

  




 

0i 0j
0

0

j

i
 
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   <4.2> 

by dividing by  this yields the algebraic equation:  

   

This means that also algebraic behavioral equations can be interpreted ad NCD behavioral 

equations with infinite power factors.  

 

4.1.2. Comment 2:  

A special case of Comment 1 is to look at the models with one or more parameters : 

   

 

4.1.3. Comment 3:  

If it holds for a certain  and a certain  that for all  it is true that , the differential 

equation will read   

   

In this case the power factor  can also be interpreted as adjustment speed. This interpretation 

is however only partially adequate due to two reasons: 

 A variable does not adjust on its own, it can only be adjusted by an agent’s actions. The 
factors  are therefore rather characteristics of the agents than of the variables. 

 Most importantly the interpretation of the factors as adjustment speeds is not tenable 

anymore for the general case of the behavioral equation of NCD models in <4.1>. They 

can however very well be interpreted as the power of agent  to change variable  when 

applying a force . 

 

4.1.4. Comment 4:  

In terms of comment 2 and 3 the ‘parameters’ can either be seen as a variable with infinite 
adjustment speed or as a variable with an associated agent who possesses infinite power to change 

it. 
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4.2. NCD-models with individual utility functions 
For economic models the case in which the economic forces can be described as gradients of an 

individual utility function  of an agent is of special importance. It is only dependent on the 

flow variables,  i.e. if it holds: 

   

The path-independent economic force associated to the utility function   

describes the ‘rational’ preferences of agent . For these cases the basic system of equations reads: 

   

   

This system of equations can be interpreted in the following way: the more an agent’s individual 

utility will increase, the higher will be the ‘rational’ preference respectively the economic interest 
and thereby the economic force an agent will employ in order to change a variable. The factual 

change arises as an interplay of all these forces and constraint forces. It is thus the resultant force 

of the agents’ individual optimization strategies. 

A core assumption of standard economics is that in a market economy the ‘invisible hand’ will lead 
to an optimal result for all market participants, or put more widely, that total utility will be maximal 

when all market participants seek to maximize their own utility. That this in no way is always the 

case will be illustrated with the example of a continuous prisoners dilemma in chapter 8. NCD 

models allow investigating the question under which circumstances this core assumption of market 

economics is fulfilled or which constraints are necessary so that individual optimization leads to a 

general optimum. These problems will be discussed more in depth elsewhere3.  

 

4.3. NCD models with a master utility function 
Modern neoclassical models, especially DSGE models, in general do not assume that every agent 

tries to maximize his own utility, rather they assume that the entire economic system is determined 

by the maximization of one single function. For the sake of a clear distinction we will call this utility 

function ‘master utility function’ . In case such a master utility function exists the basic system 

of equations can be written as: 

                                                 
3 E. Glötzl, The prisoners dilemma as an NCD model. The conditions under which individual 

optimization leads to a general optimum. (work in process) 
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With respect to the master utility function to major questions arise: 

1. Under which conditions does such a master utility function exist such that its maximization 

determines the entire system? This question is often called the problem of aggregability of 

utility functions. As to content this question entails under which conditions it is justified to 

describe an economic system as neoclassical model. 

2. Under which conditions does the maximization of the master utility function  also lead 

to the maximization of total utility , if defined as sum of the utility of all agents? 

In order to answer the first question whether a master utility function exists three sufficient 

conditions can be defined, which we always formulate only for two individual utility functions with 

two flow variables for the sake of simplicity. It therefore needs to be illustrated under which 

conditions for 2 individual utility functions  and individual power factors 

 a master utility function  exists so that: 

   

This holds in the following 3 cases: 

1. „quasi-linear“: 
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For the continuous prisoners dilemma in chapter 8 condition 1 ‘quasi-linear’ is fulfilled and for the 

example in chapter 7 the condition 2 ‘independent’ is fulfilled. 
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Defining total utility as  it becomes clear from the above examples that in general

 and that the maximization of the master utility function  does not necessarily lead 

to a maximization of the total utility function . An example for that is the continuous prisoners 

dilemma in chapter 8. In answer of the second question from the above conditions it becomes 

obvious immediately that it holds that:   
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5. Closure  
 

5.1. Problem description 
The aim of economic models is to be able to calculate the state of the system i.e. the endogenous 

variables with given exogenous variables. For a model with n endogenous variables to have a unique 

solution n linearly independent equations are necessary.  

If there are less than n linearly independent equations the model is underdetermined. That means 

that there is a multitude of solutions. If there are more than n linearly independent equations, the 

model is over-determined. That means that it does not have a solution in general. Especially when 

an additional constraint such as an accounting identity or an equilibrium condition in the form of  

   

is introduced to an otherwise solvable system with  behavioral equations for  variables, it will 

normally be over-determined. The procedure to adjust an over-determined system in order for it 

to be uniquely solvable is called ‘closure’. That means to modify a system of equations so that the 

number of endogenous variables is equal to the number of linearly independent equations. In fact 

the choice of a closure determines which variables are considered endogenous and which 

exogenous. 

In principle there are two possibilities for the closure: 

1. Dropping the respective number of equations (‘drop closure’). Economic theories are often 
characterized exactly by which equations are dropped (Sen, 1963). 

2. Introducing the respective number of additional endogenous variables. The most important 

special case is the introduction of Lagrange multipliers (‘Lagrange closure’).  

For reasons of simplicity we will show both possibilities each with an economic model with 3 

variables and 1 constraint. 

 

5.2. Drop-Closure 
The over-determined algebraic economic model:  

  <5.1>  

can be made solvable by for instance dropping the third equation to read: 

  

 

 

The over-determined economic system of differential equations:  
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   <5.2> 

can be made solvable by dropping for instance the third equation to read: 

   <5.3> 

 

5.3. Lagrange Closure for an algebraic model 
An over-determined algebraic model: 

   

can be translated into a solvable NCD system by introducing the arbitrary parameter 

 
and the additional variable  (Lagrange multiplier): 

  

5.4. Lagrange Closure for a model of differential equations 
The general form of an over-determined economic system of differential equations:  
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can also be translated into a solvable NCD model by introducing the additional variables  
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   <5.5> 

 

5.5. Drop Closure of algebraic models as manifestation of one-sided power 

relations 
Under the respective regularity conditions the following proposition holds: 

Proposition 1: 

The algebraic system of equations 

   

is equivalent to the NCD model 

   

if the power factors are chosen such that: 

   

 

From proposition 1 follows the interpretation that a drop closure of algebraic models as in 5.2 is 

equivalent to a Lagrange closure of algebraic models as in 5.3, with the power factors defined as 

. This means that a drop closure of an over-determined algebraic model is 

equivalent to setting one-sided power relations. 
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Proof: 

From (5) it follows that the economic forces  are effective immediately and 

unrestrictedly so that the system goes into a state in which these forces are 0 immediately. When 

(1) is divided by  and (2) by respectively,  and , yields:  

   

By (6) it is stated that nobody has powers to influence  directly or that nobody wants to influence 

them. This means that  is exclusively determined by ‘market forces’ and the constraint forces. 

In concrete we show that under the condition (6)  is given solely by (3), (4), (6) and that equation 

(3) takes the form   As  follows from (4) equation (3) can be omitted which yields: 
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Obviously, by a respective choice of power factors in the same way one gets: 

   

From this follows the direct interpretation: 

Which equations are omitted in a drop closure is an implicit assumption about power relations. A 

drop closure omitting the ith equation corresponds to the assumptions  

1.  cannot be influenced by any agent and is therefore determined only by market forces and 

the constraint, 

2. all other with
k

y k j   of the agents are fully determined so that the system immediately goes 

into the state in which the economic forces 0kf for k j  . 

  

5.6. Drop closure of systems of differential equations as manifestation of 

economic powerlessness 
Under the respective regularity and differentiability conditions the following proposition holds: 

Proposition 2:  

For each system of differential equations such as <5.6> 

   <5.6> 

there are functions  so that the system of differential equations is equivalent to an 

NCD model of the form <5.7> 

   <5.7> 

with the power factor 
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and reciprocally it holds that for every NCD model of the form <5.7> with  there are 

functions  so that this NCD model is equivalent to a system of differential equations 

of the form <5.6>. 

Proposition 2 leads to the following interpretation: a drop closure of an over-determined system 

of differential equations in terms of 5.2 is equivalent to an NCD model of the form <5.7> with a 

power factor . That means that the drop closure is synonymous to nobody having power to 

influence variable  or that nobody wants to. This in the end means that  is solely determined 

by market forces and the constraint. 

 

Proof: 

We first demonstrate the inverse: 

Analogously to 5.5 we show that under the condition (5)  is given solely by equations (3), (4), (5) 

and that equation (3) takes the form of . As  follows from (4), equation (3) can be 

omitted. Inserting   yields  
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For the first case it holds that: starting from a system of differential equations  

   

and setting 
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yields in the same way that <5.7> with  is equivalent to <5.6>. 
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6. Relationship between NCD models and standard types of economic 

models  
 

6.1. NCD models and algebraic models 
From proposition 1 in 5.5 follows: Each algebraic economic model is equivalent to a NCD model 

with one-sided power relations, i.e. a NCD model in which certain power factors are infinite and 

others equal to zero. 

6.2. NCD models and systems of differential equations 
From proposition 2 in 5.6 follows: Each economic system of differential equations is equivalent to 

a NCD model in which certain power factors are zero. 

6.3. NCD models and general equilibrium models 
A general economic equilibrium model with constraints with 3 variables and 1 constraint has the 

following general form (if necessary under consideration of comments 4.1.1 and 4.1.2 on the 

algebraic behavioral equations of parameters): 

   

This evidently describes exactly those solutions to the NCD model 

   

for which the ‘ex post’ forces are 0. They can be described as the limit  of the NCD model 
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   <6.1> 

when dividing by . Here  can be interpreted as a factor for the adjustment speed. The 

assumption  therefore means that the system always jumps to the equilibrium immediately. 

If a master utility function  exists with 

   

and  is concave, there is only one solution and for this solution  is maximal. In the 

microeconomic standard general equilibrium models the economic forces  are also 

called excess demand. 

Economic equilibrium models in general assume a concave master utility function to exist. This 

assumption and the equilibrium assumption, i.e. that the economic ‘ex post’ forces are always equal 

to 0 however constitute a strong restriction.  

 

6.4. NCD models and DSGE models 
With the exception of the stochastic element DSGE models are general equilibrium models with 

constraints and a master utility function , where not  is maximized, but the total 

discounted future utility .  is the integral over all future utility discounted with the interest 

rate :  

   

This constitutes a variational problem with the Lagrangian 

   

The solutions to this variational problem are found within the solutions to the associated Euler 

equations. 
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Therefore, in case there is a master utility function which allows describing the economic forces of 

an NCD model, also the respective equilibrium model for the maximization of can be set up. 

The inverse question whether the model equations of every general NCD model can be written as 

Euler equations of a variational problem leads to the so-called ‘inverse Langrage problem’. The 
answer to this question is no, as not every ordinary system of differential equations can be 

expressed as Euler equations of a Lagrangian and in case there is a Lagrangian it is not uniquely 

determined (Santilli, 1978). This is relevant in so far as in mainstream economics only models which 

are derived from the variational problem of a discounted master utility function are investigated. 

This constitutes a major restriction and further shows the only partially completed adoption of 

Newtonian mechanics in economics. 

Also for very simple NCD models there does not have to be a Lagrangian and if it exists it can be 

very complex. Two examples will makes this clear. 

A simple example of a system of differential equation with a Lagrangian which is not uniquely 

determined is: 

   

It describes a system with positive feedbacks for  (exponential growth) and with negative 

feedbacks for (exponential decline). Already this extremely simple differential equation of 

the first order has two substantially different Lagrange functions: 

   

For the very simple system of differential equations  

   

it can be shown that no Lagrangian exists (Prince & King, 2007). 

Differential equations and thereby NCD models therefore seem to be more adequate to describe 

economic systems in a general way.  

 

6.5. NCD models and agent based models 
In agent based models (ABM) a multitude of agents is assumed. The behavior of every agent is 

described. As the general structure of NCD models remains unchanged independent of the number 

of agents, NCD models with many agents can be regarded as , stock flow consistent, time 

continuous ABMs, with behavioral equations in the form of differential equations. 
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6.6. Schematic overview 
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7. The relationships illustrated with the example of a 2-sector NCD model  
 

7.1. NCD model 
We start from a NCD model with two agents H and B which represent the sectors households (H) 

and business (B). For each of the first six out of seven variables  

L

K Capital

I Investment

p wagerate

S saving

L labour

P profit

Y GDP

   

there is one differential equation. For  it holds by definition, for all others it is a behavioral 

equation expressing that the respective force employed by agent  (H or B) in order to change 

variable  is equal to the deviation of variable  from a desired state.  denominates the 

economic power of agent to influence variable . In this model we assume that each agent  can 

only influences the one variable  respectively, i.e. . This means that in this 

model the condition 2 ‘independent’ discussed in 4.3 for the existence of a master utility function 

is fulfilled. 

The 7th variable  corresponds to a parameter with an algebraic behavioral equation, which in 

terms of 4.1.1 comment 1 and 4.1.2 comment 2 can be interpreted as border case of a respective 

differential equation with an infinite power factor. 

In addition, the two accounting identities constitute constraints. There is one constraint for the 

production side of GDP and one for the use of saved funds for investment. From this the model 

equations for the NCD model can be derived. 

 

L

B

I 0 1 2 0 1

B

L p L 1

H

S L L P 2 L P

¢(1) K = I

(2) I = m (i +i Y - I)+ l i ,i constant (linear investment function)

¶Y ¶Y
(3) p = m ( - p ) - l L marginal productivity of labour

¶L ¶L

(4) S = m (s p L + s P - S) - l s , s share of savings out of labour income resp. profit

(5) L






H

L 1 L

B

P 1

a 1-a

1 L

2

' = m ( L - L) - l p L intended labour of household

(6) P =m (rY - P) - l r intented profit rate

(7) Y = L K Cobb - Douglas production function

(8) ZB = Y - p L - P = 0

(9) ZB = I - S = 0



  

  

For the master utility function it holds that: 

K

j

i i j

i


j i j

j
y 0j
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Y



44 

 

   <7.1> 

 

In the following we will show how Keynesian, neoclassical and general equilibrium models can be 

derived from this NCD model by assuming one-sided power relations (  ). 

Similarly the assumption of infinitely high adjustment speeds ( in terms of <6.1> ) yield 

equilibrium models with constraints. 

In terms of content this approach corresponds to that of Sen (1963), considering that as per 5.5 

the choice of one-sided power relations is equivalent to a drop closure. 

This allows us to once again state the basic idea behind NCD models. NCD models are a way to 

overcome the allegedly insurmountable antagonism between different schools of economic 

models. These different model types can be expressed as versions and special cases of one single 

model, and only differ in the choice of different one-sided power relations or adjustment speeds. 

Moreover, NCD models make it possible to better depict the reality, as mixed power relations are 

more common than one-sided power relations.  

 

7.2. Algebraic neoclassical model 
Setting 

   

leads to dropping the equations (2) and (6) and yields 

   

This model corresponds to the neoclassical standard model with exogenously determined work 
. 

 

7.3. Algebraic Keynesian model 
Setting 
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leads to dropping the equations (5) and (6) and yields 

   

 

This model corresponds to Keynes’ approach in the General Theory where work and 
employment is not exogenously determined but determined by the market forces and 

constraints. This means nothing else than unemployment being possible. 

 

7.4. General equilibrium model with constraints 
Adding the adjustment speed of  in terms of <6.1> and letting , this yields the general 

equilibrium model 

   

As the condition for the existence of a master utility function: 2 ‘independent’ discussed in 
chapter 4.3 is given the system of equations can be written with the master utility function from 

<7.1> as  
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7.5. General equilibrium model with constraint and discounted utility function 

 

With the master utility function <7.1> the discounted utility function  with interest rate 

 can be set up: 

   

The maximization of  leads to a variational problem with the respective Euler equations. 

 

7.6. Computational results 
 

The following results illustrate exemplarily the dependence of the system from the choice of power 

factors. Choosing one-sided power relations yields the above models. 

The parameters  were not changed for 

any of the computations. 

      v 

NCD model 1 1 1 1 1 1 1 
NCD model 2 1 10 10 1 1 1 
Algebraic neoclassical 0 ∞ ∞ ∞ 0 1 
Algebraic Keynesian ∞ ∞ ∞ 0 0 1 
General equilibrium with constraint 1 1 1 1 1 ∞ 
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8. Continuous prisoners dilemma  
 

An NCD model describes the behavior of a system in which every agent follows an individual 

optimization strategy. He tries to increase his individual utility. The core assumption of mainstream 

market economics is the assumption that these individual strategies lead to the general optimum 

through the ‘invisible hand’ of the market. In reality this is however not or at least not always the 
case. 

In real situations prisoners dilemmas are very common. The individually best strategy for each 

agent leads to the overall worst solution. We show that especially such situations can be modeled 

very well using NCD models. As an example we build an NCD model of a continuous prisoners 

dilemma. Even though this NCD model can be described by a master utility function which even 

increases with time, the utility for both agents is decreasing continuously. 

We start from two agents  and two variables  and the special utility functions  

   

 

First we show that in discrete time and with only one round this gives the payoff matrices of the 

classical prisoners dilemma, if the variables can only take the two discrete values, for 

cooperation and for defection: 

   

 

In order to set up an NCD model for the continuous prisoners dilemma case we start from the 

following power factors. 

   

These describe a situation in which each agent can only influence ‘his’ variable, i.e. he can only 
influence his own decisions. With these power factors and the utility functions  the 

behavioral equations for the NCD model of the continuous prisoners dilemma read: 

   

which can be described with the master utility function: 
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The solution follows as: 

   

   

Therefore, the progression of the master utility function is given as: 

  

   

  

This means that the master utility function continuously increases while the progression of the 

individual utility functions of the agents. The total utility  is given by 

  

   

 

which means that they are continuously decreasing.  
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9. Advantages of NCD models 
 

In conclusion there are several advantages to the use of NCD models: 

1. NCD models can be the bases for a new economic thinking in terms of: 

  Economic power 

  Economic force  

  Economic constraint force 

 

2. NCD models allow a unified look onto many types of economic models. 

  

3. NCD models give an understanding for the equivalence of different closures and the choice 

to assign different one-sided power relations. 

  

4. In reality power is not purely one-sided. NCD models allow depicting real power relations 

better. 

  

5. NCD models give a correct and precise understanding between ‘ex ante’ and ‘ex post’ 
dynamics. 

  

6. NCD models allow describing real disequilibrium dynamics. Especially situations without 

equilibria (or in which utility functions are not concave) can be described well. 

  

7. NCD models allow expressing real competition models, i.e. models in which individual 

optimization strategies do not lead to an overall optimal result. In reality such prisoners 

dilemma situations are very common. 

  

8. NCD models can be the basis for a new theoretical understanding of e.g.: 

 Economic growth 

 Business cycles and economic crises 

 Analogies between physics and economics 

 

9. NCD models can also be used for many practical tasks such as economic forecasting or 

modeling the impacts of fiscal or monetary policy. 
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