FPF:FPFVA041 Introduction to Logic - Course Information
FPFVA041 Introduction to Logic
Faculty of Philosophy and Science in OpavaSummer 2021
- Extent and Intensity
- 0/1/0. 5 credit(s). Type of Completion: z (credit).
- Teacher(s)
- doc. RNDr. Luděk Cienciala, Ph.D. (seminar tutor)
- Guaranteed by
- doc. RNDr. Luděk Cienciala, Ph.D.
Faculty of Philosophy and Science in Opava - Prerequisites (in Czech)
- TYP_STUDIA(N)
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- there are 51 fields of study the course is directly associated with, display
- Course objectives
- The course is aimed to propositional logic and first order predicate logic.
- Syllabus
- 1. Introduction to logic – propositions, arguments, deductive and inductive arguments, validity and truth
- 2. Symbolic logic – symbols for conjunction, disjunction, negation, conditional and biconditional statement
- 3. Propositional logic – truth function, tautology, contradiction, satisfiable formula, the Short-cut truth table method, the Truth tree (tableau) method
- 4. Propositional logic – normal forms of propositions
- 5. Propositional logic – resolution
- 6. Propositional logic – deductive proofing in Hilbert and Gentzen axiom systems
- 7. Predicate logic – syntax and semantic
- 8. Predicate logic – representation, free and bounded variables
- 9. Predicate logic – interpretation and inferences
- 10. Predicate logic – unification, resolution
- Literature
- required literature
- HODEL, Richard E. An introduction to mathematical logic. Reprint. Dover Publications, 2013. info
- ing M. Copi, Carl Cohen, Kenneth McMahon. Introduction to Logic. Routledge, 2013. ISBN 9780205820375. info
- recommended literature
- Švejdar, V. Logika: neúplnost, složitost a nutnost. Praha, Academia, 2002. info
- Sochor, A. Klasická matematická logika. Praha, Univerzita Karlova, 2001. info
- Štěpánek, P. Matematická logika. Prraha, Univerzita Karlova, 2000. info
- Jirků, P., Vejnarová, V. Neformální výklad základů formální logiky. VŠE Praha, 2000. URL info
- Lukasová, A.:. Logické základy umělé inteligence I. Ostrava, 1999. info
- Gahér, F. Logika pro každého. Bratislava, IRIS, 1998. info
- Gahér, F. Logické hádanky a paradoxy. Bratislava, IRIS, 1997. info
- Štěpán, J. Logika a logické systémy. Olomouc, Votobia, 1992. info
- Manna, Z. Matematická teorie programů. Praha, SNTL, 1981. info
- Teaching methods
- Interactive lecture
Lecture with a video analysis - Assessment methods
- Exam
- Language of instruction
- Czech
- Teacher's information
- Credit: full-time students wrote the exercises two credit tests scoring 20 points each.
Exam: Total of examination exam can earn 60 points. For the successful completion students need to get 30 points. Mark for full-time study is determined by adding the points for the exam and points that the student earned during the semester in the course. Mark the combined study is determined from the points gained from examination test.
- Enrolment Statistics (recent)
- Permalink: https://is.slu.cz/course/fpf/summer2021/FPFVA041