FPF:UIBUC03 Mathematics I - Course Information
UIBUC03 Mathematics I
Faculty of Philosophy and Science in OpavaWinter 2021
- Extent and Intensity
- 2/3/0. 5 credit(s). Type of Completion: zk (examination).
- Teacher(s)
- doc. RNDr. Luděk Cienciala, Ph.D. (lecturer)
RNDr. Radka Poláková, Ph.D. (seminar tutor) - Guaranteed by
- doc. RNDr. Luděk Cienciala, Ph.D.
Institute of Computer Science – Faculty of Philosophy and Science in Opava - Timetable
- Mon 9:45–11:20 B1
- Timetable of Seminar Groups:
UIBUC03/B: Wed 11:25–13:50 B2, R. Poláková - Prerequisites
- Mathematics in the range secondary school curriculum.
- Course Enrolment Limitations
- The course is also offered to the students of the fields other than those the course is directly associated with.
- fields of study / plans the course is directly associated with
- Computer science in combination with another discipline (programme FPF, B1803 InDO)
- Course objectives
- The aim of the course is to acquaint students with the basic concepts of mathematical analysis.
- Syllabus
- - The language of mathematics, introduction to logic.
- Definition of functions and basic properties of functions, elementary functions, domain of a function, determination of the basic properties of functions.
- Graphs of functions.
- Limit and continuity of functions, limit of a sequence.
- Differential calculus of functions of one variable, derivatives, higher order derivatives, differential. Applications of derivatives, l'Hospital rule, geometrical meaning of the derivative at a point. Graphing functions.
- Indefinite integral, methods of calculating indefinite integrals, integration by substitution, integration by parts, integration of rational functions, integration of irrational functions, integration of trigonometric functions, trigonometric substitution.
- Definite integral, geometric applications of definite integrals, content figure, volume of a rotational body, an arc length of a plane curve, the content surfaces of revolution.
- - The language of mathematics, introduction to logic.
- Literature
- recommended literature
- Brožková, A. Cvičení z matematické analýzy II. pe. info
- Cienciala, L., Ciencialová, L. Teorie grafů a grafové algoritmy. Slezská univerzita v Opavě, 2014. ISBN 978-80-7510-060-3. info
- Došlá, Z., Kuben, J. Diferenciální počet funkcí jedné proměnné. Brno: MU, 2004. info
- Míka, S., Drábek, P. Matematická analýza I. ZČU Plzeň, 2003. info
- B. P. Děmidovič. Sbírka úloh a cvičení z matematické analýzy. Havlíčkův brod, 2003. info
- DEVLIN, K. Jazyk matematiky. Praha: Argo, 2002. ISBN 80-7203-470-7. info
- Švejdar, V. Logika: neúplnost, složitost a nutnost. Praha, Academia, 2002. info
- Sochor, A. Klasická matematická logika. Praha, Univerzita Karlova, 2001. info
- Štěpánek, P. Matematická logika. Prraha, Univerzita Karlova, 2000. info
- Jirků, P., Vejnarová, V. Neformální výklad základů formální logiky. VŠE Praha, 2000. URL info
- Lukasová, A.:. Logické základy umělé inteligence I. Ostrava, 1999. info
- Černý, I., Rokyta, M. Differential and integral calculus of one real variable. Praha, Karolinum, 1998. info
- Brožková, A. Cvičení z matematické analýzy I. Pedagogická fakulta Ostravské univerzity, 1995. info
- Jarník V. Diferenciální počet. Academia Praha, 1975. info
- Teaching methods
- Interactive lecture
Lecture with a video analysis - Assessment methods
- Exam
- Language of instruction
- Czech
- Further comments (probably available only in Czech)
- Study Materials
The course can also be completed outside the examination period. - Teacher's information
- Credit: full-time students wrote the exercises two credit tests scoring 30 points each. All five students solve homework. For each homework gets 8 points. To obtain the credit needed 50 points. Points earned during the semester is multiplied by 0.4 and rounded up. Normalized points are counted for the exam.
Exam: Students may receive a maximum of 60 points from the exam. The successful it is necessary to obtain 30 points. To determine the mark of the test points earned in a semester of credit tests and the exam added. Maximum points is 100
- Enrolment Statistics (recent)
- Permalink: https://is.slu.cz/course/fpf/winter2021/UIBUC03