UF1U054 Teoretická mechanika

Filozoficko-přírodovědecká fakulta v Opavě
zima 2012
Rozsah
4/2/0. 5 kr. Ukončení: zk.
Vyučující
doc. RNDr. Stanislav Hledík, Ph.D. (přednášející)
doc. RNDr. Stanislav Hledík, Ph.D. (cvičící)
Garance
doc. RNDr. Stanislav Hledík, Ph.D.
Centrum interdisciplinárních studií – Filozoficko-přírodovědecká fakulta v Opavě
Předpoklady
UFAF001 Mechanika a molekulová fyzika || UF01000 Mechanika a molekulová fyzika
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Přednáška seznamuje se základy nerelativistické klasické dynamiky diskrétních a spojitých mechanických systémů. Po úvodní rekapitulaci elementární mechaniky a jejím zobecnění na diskrétní systémy s vazbami se výklad odvíjí z variačních principů. Kromě partií teoretického charakteru jsou zařazeny důležité aplikace a příklady ilustrující rozvíjené teoretické metody. Sylabus (platí pro přednášku i cvičení) Rekapitulace newtonovské mechaniky? Kinematika, souřadnice; Newtonovy zákony, Galileiho princip relativity, superpozice, actio in distans, zákony zachování; prostor, čas a hmotnost v Newtonově mechanice; Machův princip ?a její aplikace na systémy s vazbami. Vazby, jejich klasifikace, obecné souřadnice, konfigurační prostor, počet stupňů volnosti; princip virtuálních prací a d?Alembertův princip, Lagrangeovy rovnice I. a II. druhu, lagrangián; zákony zachování; disipativní systémy. Variační princip poprvé? Motivace; Hamiltonův princip, akce, Eulerovy-Lagrangeovy rovnice (Lagrangeovy rovnice II. druhu) a jejich vlastnosti; vlastnosti lagrangiánu, konstrukce lagrangiánu a jeho struktura; zákony zachování, symetrie, teorém Noetherové; význam variační formulace. Hamiltonův formalismus. Sdružené proměnné, Legendreova transformace, fázový prostor, hamiltonián a jeho struktura, Hamiltonovy kanonické rovnice pohybu a jejich vlastnosti, cyklické souřadnice a Routhova metoda; zákony zachování a fyzikální význam hamiltoniánu. ?podruhé? Modifikovaný Hamiltonův princip ? odvození Hamiltonových kanonických rovnic z variačního principu. Kanonické transformace. Definice kanonické transformace, generující funkce, příklady na kanonické transformace, Poincarého integrální invarianty, Poissonovy závorky, infinitesimální kanonické transformace, Liouvilleův teorém. Hamiltonova-Jacobiho teorie. Hamiltonova-Jacobiho rovnice a její interpretace, ilustrace (harmonický oscilátor,?), Hamiltonova charakteristická funkce, separace proměnných; geometrická a vlnová mechanika. Aplikace. Malé kmity s jedním a více stupni volnosti, rezonance; problém dvou těles, pohyb ve sféricky symetrickém poli, Keplerova úloha, elementární nebeská mechanika, klasická teorie rozptylu; pohyb tělesa s proměnnou hmotou; pohybové rovnice v neinerciálním systému; mechanická podobnost, viriálový teorém. Pohyb tuhého tělesa. Kinematika tuhého tělesa; dynamika tuhého tělesa jako speciální případ dynamiky soustavy hmotných bodu, tensor momentu setrvačnosti, hlavní osy a hlavní momenty setrvačnosti, Eulerovy dynamické rovnice; Lagrangeův formalismus; klasifikace tuhých těles (setrvačníku) podle hlavních momentů setrvačnosti, rozbor pohybu setrvačníku volných i ve vnějším poli, precese, nutace. Základní pojmy mechaniky kontinua. Přechod od diskrétního ke spojitému systému, rozklad pohybu kontinua na translaci, rotaci a deformaci, matematický aparát pro popis kontinua; tensor konečných a malých deformací; tensor napětí; obecné úvahy o rovnici kontinuity. Základy teorie pružnosti. Zobecněný Hookeův zákon, symetrie, isotropní pružné prostředí a jeho charakteristiky; okrajové úlohy; příklady (vlny v isotropním pružném prostředí, ohyb nosníku, torze tyče aj.). Základy hydrodynamiky. Hydrostatika; proudnice, proudění vířivé a nevířivé, Helmholtzovy věty; dynamika ideální tekutiny ? Eulerovy rovnice, rovnice kontinuity a termodynamické podmínky, Bernoulliho rovnice; dynamika viskózní tekutiny ? tok hybnosti ve viskózní tekutině, Navierovy-Stokesovy rovnice, viskozita, disipace energie, termodynamika proudění, hydrodynamická podobnost; okrajové úlohy, příklady ? vlny v tekutině, některá další řešení rovnic dynamiky ideální tekutiny; některá řešení Navierových-Stokesových rovnic pro malé Reynoldsovo číslo; turbulen
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích zima 1993, zima 1994, zima 1995, zima 1996, zima 1997, zima 1998, zima 1999, zima 2000, zima 2001, zima 2002, zima 2003, zima 2004, zima 2005, zima 2006, zima 2007, zima 2008, zima 2009, zima 2010, zima 2011, zima 2013, zima 2014, zima 2015, zima 2016, zima 2017, zima 2018, zima 2019, zima 2020.