UFDF021 Statistika pro fyziky

Filozoficko-přírodovědecká fakulta v Opavě
zima 2018
Rozsah
0/0. 0 kr. Ukončení: dzk.
Garance
doc. RNDr. Stanislav Hledík, Ph.D.
Centrum interdisciplinárních studií – Filozoficko-přírodovědecká fakulta v Opavě
Omezení zápisu do předmětu
Předmět je nabízen i studentům mimo mateřské obory.
Mateřské obory/plány
Cíle předmětu
Cílem je seznámit posluchače se základy počtu pravděpodobnosti, se základy popisné i induktivní statisticky včetně prezentace statistických dat, a se základy modelování dat. Výklad je doplněn interaktivními počítačovými demonstracemi založenými na reálných datech a případech.
Osnova
  • 1. Základní pojmy teorie pravděpodobnosti. Opakování, kombinatorika. Pojem pravděpodobnosti, náhodný pokus, náhodný jev, definice a vlastnosti pravděpodobnosti. Nezávislost jevů, podmíněná pravděpodobnost. Náhodná veličina diskrétní a spojitá, pravděpodobnostní distribuční funkce (hustota pravděpodobnosti, PDF) a (kumulativní) distribuční funkce (CDF).
    2. Charakteristiky rozdělení pravděpodobnosti. Momenty, střední hodnota, rozptyl, standardní odchylka, šikmost, kurtosita, další míry variability. Medián, kvantily, modus. Transformace náhodné veličiny.
    3. Základní jednorozměrné distribuční funkce. Diskrétní distribuční funkce (alternativní, binomická, Poissonova, hypergeometrická, geometrická, negativně binomická). Spojité distribuční funkce (rovnoměrná, exponenciální, normální, log-normální, chi-kvadrát, Weibullova, Erlangova).
    4. Náhodný vektor. Distribuční funkce a hustoty pravděpodobnosti vícerozměrných rozdělení. Marginální rozdělení, korelační (kontingenční) tabulka. Momenty rozdělení, kovariance, lineární korelační koeficient, nekorelované a nezávislé veličiny. Multinomické rozdělení, dvoudimenzionální normální rozdělení.
    5. Limitní věty počtu pravděpodobnosti. Bernoulliova věta, zákon velkých čísel (Čebyševova věta), centrální limitní teorém.
    6. Statistika - úvod a statistická šetření. Základní pojmy. Kvalitativní a kvantitativní proměnné a jejich statistické charakteristiky. Výběrová šetření, způsoby, typy a chyby. Výběrová rozdělení a jejich charakteristiky - populační vs. výběrové, četnosti. Rozdělení statistik ve výběrech z normálního rozdělení.
    7. Základy teorie odhadu. Bodový a intervalový odhad, nestranný a nejlepší nestranný odhad. Asymptotické vlastnosti odhadu, konzistentní odhad. Konstrukce bodového odhadu (momentová metoda, metoda maximální věrohodnosti). Konstrukce intervalového odhadu.
    8. Testování statistických hypotéz. Metodika testování hypotéz, statistická hypotéza, nulová a alternatívní hypotéza, testová statistika, hladina statistické významnosti, p-hodnota, počet stupňů volnosti, chyba prvního a druhého druhu.
    9. Vybrané parametrické testy. Testování aritmetického průměru a rozptylu (Studentův t-test a F-test), testy dobré shody (chi kvadrát, Kolmogorovův-Smirnovovův test). Analýza závislostí (kontingenční a asociační tabulky, Pearsonův koeficient). Analýza rozptylu (ANOVA), post hoc analýza.
    10. Vybrané neparametrické testy. Mannův-Whitneyův test, Kruskalův-Wallisův test, Spearmanův koeficient, Kendallovo tau. Testy pro závislé výběry (Friedmanův test).
    11. Regresní a korelační analýza. Model, koeficienty modelu. Lineární regresní model. Bodové odhady (bodový odhad parametrů regresní přímky, význam bodových odhadů), verifikace modelu, stabilita modelu, testování reziduí. Zobecněná lineární regrese (konstrukční matice, normální rovnice, multikolinearita). Index determinace, parciální korelační koeficienty.
    12. Ukázky případových studií a aplikací metod statistiky a modelování dat.
Literatura
    doporučená literatura
  • P. Gregory. Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica? Support. Cambridge University Press; 1 edition (June 28,. ISBN 978-0521150125. info
  • E.T. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press (June 9, 2003). ISBN 978-0521592710. info
  • RICE, John A. Mathematical Statistics and Data Analysis (with CD Data Sets). 3 edition. Belmont, CA: Thomson/Brooks/Cole, 2007. ISBN 0-534-39942-8. info
Informace učitele
Účast na přednáškách je doporučená. Může být nahrazena samostudiem
doporučené literatury a individuálními konzultacemi.
Další komentáře
Předmět je dovoleno ukončit i mimo zkouškové období.
Předmět je zařazen také v obdobích zima 2000, léto 2001, zima 2001, léto 2002, zima 2002, léto 2003, zima 2003, léto 2004, zima 2004, léto 2005, zima 2006, léto 2007, zima 2007, léto 2008, zima 2008, léto 2009, zima 2009, léto 2010, zima 2010, léto 2011, zima 2011, léto 2012, zima 2012, léto 2013, zima 2013, léto 2014, zima 2014, léto 2015, zima 2015, léto 2016, zima 2016, léto 2017, zima 2017, léto 2018, léto 2019, zima 2019, léto 2020, zima 2020, léto 2021, zima 2021, léto 2022.