FPF:FPFVA020 Comp. geometry and graphic I - Informace o předmětu
FPFVA020 Computational geometry and computer graphics I
Filozoficko-přírodovědecká fakulta v Opavězima 2020
- Rozsah
- 0/1/0. 5 kr. Ukončení: z.
- Vyučující
- doc. RNDr. Luděk Cienciala, Ph.D. (cvičící)
- Garance
- doc. RNDr. Luděk Cienciala, Ph.D.
Filozoficko-přírodovědecká fakulta v Opavě - Předpoklady
- Basic PC skills, fundamentals of analytical geometry within the range of secondary school mathematics.
- Omezení zápisu do předmětu
- Předmět je nabízen i studentům mimo mateřské obory.
- Mateřské obory/plány
- předmět má 22 mateřských oborů, zobrazit
- Cíle předmětu
- Content of the course is a computer graphics in 2D, basic algorithms, basic of geometry used in computer graphics.
- Výstupy z učení
- - Student will get acquaint with the typical problems of computational geometry and computer graphics in 2D.
- Student will understand the existing solutions and their applications in computer graphics in 2D.
- Student will get deeper knowledge of mathematics.
- Student will learn the principles of geometric algebra including its application in graphics and vision related tasks.
- Student will practice programming, problem solving and defence of a small project. - Osnova
- 1. Introduction - computer graphics, colours, colour models, pallets, graphics systems
2. The image and its representation
3. Representations of raster image, raster image compression, examples of raster formats, formats for animated sequences
4. Computer graphics in two-dimensional space, rasterization of lines, circles, ellipses
5. Curves
6. Generation of brands, marks, fonts
7. Regions - fill
8. Window and shape transformation. Crop
9. Colours transformation
10. Mapping, resampling, interpolation, rotation of discrete image. Frequently used operation - thresholding, bounded thresholding, gamma correction, equalization
11. Geometry - Euclidean space, Cartesian coordinate system, similar views in Euclidean space, scale and complex transformations, coordinate systems and transformation.
12. Geometry - vectors, distances, the relative position, analytic geometry.
- 1. Introduction - computer graphics, colours, colour models, pallets, graphics systems
- Literatura
- doporučená literatura
- Klawonn, F. Introduction to Computer Graphics: Using Java 2D and 3D. Springer, 2012. ISBN 9781447127321. info
- Sarfraz, M. Interactive Curve Modeling: With Applications to Computer Graphics, Vision and Image Processing. Springer, 2010. ISBN 9781849966634. info
- Mark de Berg a kol. Computational Geometry: Algorithms and Applications. Springer, 2008. ISBN 9783540779735. info
- Agoston, K., M. Computer Graphics and Geometric Modelling: Implementation & Algorithms. Springer, 2005. ISBN 9781852338183. info
- Egerton, P. A., Hall, W. S. Computer Graphics - Mathematical first steps. Pearson Education, 1999. info
- ŽÁRA, J., BENEŠ, B., FENKEL, P. Moderní počítačová grafika. Brno Computer Press, 1998. ISBN 80-7226-049-9. info
- Hudec, J. Algoritmy počítačové grafiky. Praha, ČVUT, 1997. info
- Granát, L., Selechovský, H. Počítačová grafika. Praha, ČVUT, 1995. info
- Drs, L., Ježek, F., Novák, J. Počítačová grafika. Praha, ČVUT, 1995. info
- Sobota, B. Počítačová grafika a jazyk C. České Budějovice, KOOP, 1995. info
- Žára, J., Sochor, J. Algoritmy počítačové grafiky. ČVUT Praha, 1993. info
- Skála, V. Světlo, barvy a barevné systémy v počítačové grafice. Praha, ČVUT, 1993. info
- Drdla, J. Metody modelování křivek a ploch v počítačové geometrii. Olomouc, UP, 1992. info
- Slavík, P. Metody zpracování grafické informace. Praha, ČVUT, 1992. info
- Poláček, J., Ježek, G., Kopincová, E. Počítačová grafika. Praha, 1991. info
- Heinz-Otto Leitgen, Peter H. Richter. The Beauty of Fractals. Springer, 1986. ISBN 9783540158516. info
- Drs, L. Plochy ve výpočetní technice. Praha, ČVUT, 1984. info
- Výukové metody
- interactive lectures, homework
- Vyučovací jazyk
- Angličtina
- Informace učitele
- Credit: full-time students wrote the exercises two credit tests scored more than 30 points per test. Tests consist of three parts: a theoretical part (10 points), the numerical part (10 points) and a practical part (10 points). A necessary condition for the exam is registration to the date of the final test at: http://axpsu.fpf.slu.cz/ cie10ui/index.php. The students can get bonus points (maximum 10 points) - for submission of practical tasks the day of the exercise, to which the job is submitted or for solving complex computational problems. Each student prepares a specified project, which is rated up to 30 points. Submission of the project is a necessary condition for the granting of credit. On the selected project can sign a maximum of two full-time students the second week of the semester of the academic year and at: http://axpsu.fpf.slu.cz/ cie10ui/index.php. The deadline of submission of the project is midterm week of the semester. For every further week, the maximum number of points that a student can get for the project, reduced by 50 percent. The project includes a user manual, which describes the procedures used, algorithms. The credit is necessary to obtain total (2 + test project) 55 points.
Exam: The exam can get 70 points. For the successful completion you need to get at least 35 points. Mark is determined by adding the points for the exam and points that the student earned during the semester. - Další komentáře
- Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (zima 2020, nejnovější)
- Permalink: https://is.slu.cz/predmet/fpf/zima2020/FPFVA020