OPF:INMNASDP Statistical Data Processing - Informace o předmětu
INMNASDP Statistical Data Processing
Obchodně podnikatelská fakulta v Karvinézima 2024
- Rozsah
- 2/1/0. 6 kr. Ukončení: zk.
- Vyučující
- Mgr. Radmila Krkošková, Ph.D. (přednášející)
Mgr. Radmila Krkošková, Ph.D. (cvičící) - Garance
- doc. RNDr. David Bartl, Ph.D.
Katedra informatiky a matematiky – Obchodně podnikatelská fakulta v Karviné
Kontaktní osoba: Mgr. Radmila Krkošková, Ph.D. - Rozvrh
- Čt 8:05–9:40 VC008
- Rozvrh seminárních/paralelních skupin:
- Předpoklady
- FAKULTA(OPF) && TYP_STUDIA(N) && (FORMA(P) || FORMA(Z))
- Omezení zápisu do předmětu
- Předmět je určen pouze studentům mateřských oborů.
Předmět si smí zapsat nejvýše 45 stud.
Momentální stav registrace a zápisu: zapsáno: 62/45, pouze zareg.: 1/45 - Mateřské obory/plány
- Economics and Management (program OPF, N_EME)
- Cíle předmětu
- Based on the basic knowledge of statistics, e.g. in the Bachelor's degree course Statistics, to present and explain further notions and concepts of mathematical statistics, the main findings of this theory, and basic statistical and econometric methods. The contents of the course are presented for economic applications. To acquire the necessary computing skills and to learn to solve statistical problems using Excel on the computer.
- Výstupy z učení
- After completing the course, the student will be able to:
- process data statistically using the simple / multiple linear regression;
- accomplish simple non-linear regression;
- accomplish the statistical test whether a factor has an effect on the expected value of a variable using the one-way analysis of variance (ANOVA);
- accomplish the statistical test whether a factor has an effect on the expected value of a variable and the statistical test whether there are interactions between the factors using the two-way analysis of variance (ANOVA);
- analyse and predict the future values of a time series. - Osnova
- 1. Introduction
Elementary statistical concepts: random experiment, sample space, event space, random variable. Population and sample characteristics (mean value, variance). Point and interval estimates, hypothesis testing. - 2. Analysis of variance (ANOVA)
Basic principles of experimental design. Single factor or one-way ANOVA, assumptions, Bartlett's test for the equality of variances. Two-way ANOVA without and with replication. Three-way ANOVA – Latin squares. Kruskal-Wallis non-parametric ANOVA. - 3. Linear regression and regression analysis
Simple and multiple linear regression. The classical assumptions for the linear regression. Test of hypotheses for the parameters and confidence intervals. The coefficient of determination. Problems in regression analysis: multicollinearity and its causation; heteroscedasticity (Park test, Bartlett's test) and fixes for it; autocorrelation (sign test). Non-linear regression, basic types of non-linear regression, Törnqvist curves and their applications in economics. - 4. Dummy variables
ANOVA model with one qualitative variable and the corresponding regression model with dummy variables. A regression with a mixture of quantitative and qualitative variables (analysis of covariance, ANCOVA). - 5. Time series analysis
Types and elementary characteristics of economic time series. Decomposition of time series: trend, cyclical, seasonal, and random component. Analytical methods to determine the trend of the time series: least squares method, maximum likelihood method. Synthetic methods: moving averages, exponential smoothing. Analysis of the cyclical and seasonal component. Analysis of the random component (Durbin-Watson test for autocorrelation). - 6. Box-Jenkins methodology
Stochastic process. The autocorrelation function (ACF) and the partial autocorrelation function (PACF). Autoregressive (AR) and moving average (MA) process. Autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA), and seasonal autoregressive integrated moving average (SARIMA) process. Box-Jenkins model identification. Forecasting in linear regression, ARIMA and SARIMA models.
- 1. Introduction
- Literatura
- povinná literatura
- GUJARATI, Damodar N. Essentials of Econometrics. Fifth Edition. Sage Publications, 2023. ISBN 978-1-0718-5039-8. info
- ASTERIOU, Dimitrios a Stephen G. HALL. Applied Econometrics. 4th edition. Bloomsbury Publishing, Bloomsbury Academic, 2021. ISBN 978-1-352-01202-6. info
- doporučená literatura
- BRASE, Charles Henry, Corrinne Pellillo BRASE, Jason Mark DOLOR a James Allen SEIBERT. Understandable Statistics: Concepts and Methods. 13th Edition. Cengage, 2022. ISBN 978-0-357-71917-6. info
- HYNDMAN, Rob J. a George ATHANASOPOULOS. Forecasting: Principles and Practice. OTexts, 2021. ISBN 978-0-9875071-3-6. URL info
- ANDERSON, David, Dennis J. SWEENEY, Thomas WILLIAMS, Jeffrey D. CAMM, James J. COCHRAN, Michael J. FRY a Jeffrey W. OHLMANN. Essentials of Modern Business Statistics with Microsoft® Excel®. 8th Edition. Cengage, 2020. ISBN 978-0-357-56952-8. info
- ANDERSON, David, Dennis J. SWEENEY, Thomas A. WILLIAMS, Jeffrey D. CAMM, James J. COCHRAN, James FREEMAN a Eddie SHOESMITH. Statistics for Business and Economics. 5th Edition. Cengage, 2020. ISBN 978-1-4737-6845-1. info
- KELLER, Gerald a Nicoleta GACIU. Statistics for Management and Economics. 2nd Edition. Cengage, 2019. ISBN 978-1-4737-6826-0. info
- Výukové metody
- lectures and seminars (exercises, problems, examples and case studies), individual working out a seminar paper (several problems from the areas taught)
- Metody hodnocení
- Requirements for the student: regular study, attendance at seminars min. 70 %, seminar paper, final test.
Assessment: attendance at seminars, seminar paper (30 % of assessment), written test (70 % of assessment).
Assessment methods: individual working out a seminar paper (solving several problems from the areas taught), final written test (several problems from the areas taught). - Vyučovací jazyk
- Angličtina
- Další komentáře
- Studijní materiály
Předmět je dovoleno ukončit i mimo zkouškové období.
- Statistika zápisu (nejnovější)
- Permalink: https://is.slu.cz/predmet/opf/zima2024/INMNASDP